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Abstract 

A number of organizations who do not trust one another can build and 

maintain a highly-secured computer system that they can all trust (if they can 

agree on a workable design). A variety of examples from both the public and 

private sector illustrate the need for these systems. Cryptographic techniques 

make such systems practical, by allowing stored and communicated data to be 

protected while only a small mechanism, called a vault, need be physically 

secured. Once a vault has been inspected and sealed, any attempt to open it will 

cause it to destroy its own information content, rendering the attack useless. A 

decision by a group of trustees can allow such a vault-or even a physically des

troyed vault -to be re-established safely. 

Networks of vaults can allow reliable operation even in the face of communi

cation channel and vault failures . Networks also have several security advan

tages over single vault systems: (1) information that is no longer needed can be 

permanently destroyed, (2) comprehensive records of security relevant actions 

by the trustees can be maintained, and (3) abuse of the trustees' power requires 

advance notice. Algorithms which implement such a network are presented in a 

specially adapted formal specification language; examples of the algorithms' use 

are given; analysis of communication, memory and time requirements are 

presented; and security and reliability properties are proved. 

Each of some mutually suspicious groups can supply part of a vault, in such 

a way that each group need only trust its part in order to be able to trust the 

entire vault. Another approach to construction is based on public selection of a 

system's component parts at random from a large store of equivalent parts. The 

practicality and ramifications of the ideas presented are also considered. 
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Chapter I 

Introduction 

§1 Problem Statement & Motivation 

This section defines the increasingly important problem of providing 

computer systems that can be trusted by groups who don't neces

sarily trust one another. Example applications motivate the need for 

solutions and illustrate the nature of the solutions proposed 

Concern over the trustworthiness of computer systems is growing as the 

use of computers becomes more pervasive. It is not enough that the organiza

tion maintaining a computer system trusts it; many individuals and organiza

tions may need to trust a particular computer system. 

For example, consider a computer that maintains the checking account bal

ances of a bank. The bank is concerned, among other things, about possible loss 

of balance records. The Federal Reserve Bank must know the total of these bal

ances, to ensure that the legally required percentage of the balances is on depo

sit with it. The Internal Revenue Service requires the ability to check the bal

ance of an individual's account. Individuals, or a consumer organization acting 

on their behalf, may wish to ensure that disclosures are made known to those 
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involved, and that inquiries can never be made on information that is more than 

a few years old. 

There are many other similar applications of computers which involve 

private sector records related to consumers, such as those arising from credit, 

insurance, health care, and employment relationships. Public sector record 

keeping, in such areas as tax, social security, education, and military service 

are also quite similar. 

Another class of applications involves information about public or private 

sector organizations as opposed to information about individuals. For example, 

various international agencies, such as the International Atomic Energy Agency, 

must be able to ensure the secrecy of the in~ormation they receive from their 

member nations. Numerous industry organizations develop statistics from 

confidential information submitted to them by their member corporations. 

Brokers and other middlemen in the mailing list industry must be able to a 

ensure the confidentiality of the lists they receive from a variety of list compil

ing organizations for purposes of removal of duplications or various kinds of 

prescreening. 

All of these applications involve one group who owns or controls the com

puter system, and who is particularly concerned with reliably maintaining the 

operation of the system and with ensuring the survival of the data maintained by 

the system-they will be called the "trustees." A second group or set of groups 

are primarily concerned about the confidentiality of the data which relates to 

them that is available to the system. There may be a third group or set of 

groups, which may overlap with the first and second groups, who are concerned 

about the correctness of the operation of the system. 

Of course, many applications of computer systems used solely within large 

organizations have a similar flavor, because such organizations are often com

posed of groups or individuals with conflicting interests. 



§2 Overview & Chapter Summaries 

The basic idea of the proposed systems is introduced and the organi

zation of the thesis is presented as a guide to the reader. 

This thesis otiers a system design and feasibility argument for computer 

systems which can be established, maintained and trusted by mutually suspi

cious groups. Such systems can be used to meet the requirements of applica

tions like those mentioned in the previous section, if a workable design can be 

agreed on by the participants. The cryptographic techniques which form the 

basis of the approach are introduced in the next chapter, Chapter II. They make 

such systems practical by reducing the mechanism upon which reliability and 

security depend. This mechanism-the processor and its high-speed store-will 

be called a vault. Vaults will be constructed in a way that can be verified by all 

the participants, or by any interested party, and then they will be physically 

secured, such as by being shielded within a small safe-like container. 

In addition to introducing the cryptographic techniques, and presenting the 

relationship of the present work to the literature, Chapter II also surveys the 

varied literature which lends support to the practicality of the ideas presented: 

applications of cryptography; design and verification of security properties; 

securing apparatus from tampering and probing; and survivability of equipment, 

data and cc,>mmunication. Chapter III abstracts from the techniques of Chapter 

II the assumptions which form the basis of the proofs contained in a later 

chapter. At the same time, Chapter II also presents some important underlying 

assumptions which, although they do not enter directly into the proofs, influence 

the nature of the proposed systems. Chapter IV introduces a system based on a 

single vault. This serves the dual purpose of introducing a number of concepts 

used in the proposed multiple vault systems, and pointing out a number of 

shortcomings of single vault systems which are solved by the systems to be pro

posed. 
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The algorithms which define the operation of the multiple vault systems to 

be proposed are presented in Chapter V, using a specially adapted formal 

specification language. Then Chapter V1 provides an example of the use of the 

algorithms, which demonstrates how a multiple vault system can be established. 

Proofs of various security and reliability properties are presented in Chapter VII, 

which make use of the assumptions of Chapter III. Analysis of the performance 

issues of space, communication, and time requirements of systems based on the 

algorithms of Chapter V is presented in Chapter Vlll. Chapter IX presents tech

niques for constructing and placing into operation a secured vault, while main

taining the trust of potentially mutually suspicious groups. The final chapter, 

Chapter X, briefly considers work remaining and the implications of the present 

work. 

Before delving into the supporting literature, however, it is important to 

indicate some of the unique contributions of the present work. 

§3 What's SoN ew About All This? 

Suggested are the novelty and advantages of the present work over 

other work known to the author. 

This thesis addresses the problem of establishing and maintaining com

puter systems that can be trusted by those who don't necessarily trust one 

another. This particular formulation of the problem is believed to be a contribu

tion in its own right. In addition, the present work combines an unusually wide 

diversity of security technologies. The tecl).niques presented for allowing con

struction of apparatus which can be trusted by mutually suspicious groups also 

appear to be new. 

The detailed algorithms presented are the result of several major itera

tions, and are believed to take into account most of the important issues. The 

use of cryptography is central to many of the algorithms and is quite a bit more 



complex than that reported elsewhere. This motivated substantial extension of 

a previously defined specification language in order to integrate a variety of 

cryptographic techniques into the type-checking and parameter-passing 

mechanisms in a convenient way. Also, a new general problem for computer 

network security, "the covert partitioning problem," is introduced along with 

algorithms which provide a solution and proofs of their correctness. 
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Chapter II 

Survey of the Literature 

Considered is some of the literature which lends support to the feasi

bility argument of the present work, and some related work. 

This thesis puts forward a proposal for a new kind of highly secure com

puter system. The technologies upon which these systems must be based are 

quite diverse and cut across some traditional boundaries. Nevertheless, an 

attempt will be made to indicate the feasibility of the proposed systems by 

pointing to relevant surveys or directly into the literature. 

§ 1 Cryptographic Algorithms 

The various types of cryptographic algorithms used in the present 

work are discussed with reference to the relevant literature. 

Information is encrypted to allow it to pass safely through a potentially hos

tile environment. 



Conventional Cryptography 

Secrecy. Traditionally, concern has centered on providing the 

confidentiality of message content. Consequently, cryptographic techniques 

were devised to make it very difficult (in some cases impossible) to transform 

encrypted information back to its unencrypted form without possession of a 

secret piece of information, called a key. Two correspondents who were the sole 

possessors of a key could use it to maintain the secrecy of the message content 

of their correspondences. Note that the cryptographic algorithms themselves 

are assumed to be public knowledge; only the key need be kept secret. 

Ultimately, all cryptographic algorithms can be thought of as transforming 

symbols into other symbols. With a Captain Midnight decoder badge, the badge 

is the key, and letters are mapped into other letters. The un-breakable Vernam 

cipher maps only single bits into other bits, by adding each bit modulo two with 

a different key bit [Kahn 67]. On the other extreme, block cryptographic algo

rithms map large strings of bits, called blocks, into other blocks. The National 

Data Encryption Standard, for example, maps 64 bit blocks into 64 bit blocks, 

using a 56 bit key [NBS 77] . Many blocks can be "chained" together during 

encryption, effectively forming a single large block [Feistel 70]. 

Authentication. The present work assumes the use of block schemes, like 

the Data Encryption Standard, which make it very difficult to modify part of an 

encrypted block of information without causing drastic changes to the entire 

decrypted block. A large serial number can be appended to a block before 

encryption; its presence after decryption provides authentication of the block 

as a valid block that has not been altered. In such systems, it becomes 

extremely difficult for someone without a key to create a block that will contain 

a desired serial number when it is decrypted by a keyholder. Two communi

cants with a common key can converse using encrypted blocks of data, checking 



the serial number of each received block to ensure that it has arrived in the 

proper sequence, and to ensure that it has not been altered [Feistel, Notz and 

Smith 75]. 

Public Key Cryptography 

The cryptographic techniques considered so far have the unfortunate pro

perty that a common key must be distributed to the communicants, while it is 

kept secret from everyone else. In contrast, consider a fundamentally different 

sort of cryptographic algorithm independently proposed by Diffie and Hellman 

[76], and Merkle [78]. To use these algorithms, each participant creates a 

private key, that is never revealed to anyone else. Only a suitably related public 

key is made known to everyone. Here we will be concerned with public key cryp

tographic algorithms (like that of Rivest, Shamir and Adleman [78]) where the 

two keys are inverses of one another, in the sense that a block encrypted with 

one can be decrypted only with the other. 

Sealing. Public key cryptography can be used to provide the secrecy of 

message content. A confidential message can safely be sent if it is first seal~d. 

an operation which includes encryption with the recipient's public key. Only the 

intended recipient can decrypt the received message -because the correspond

ing private key must be used to decrypt it. A large random number is joined to 

the message during sealing, to counter two potential threats: (1) if the same 

message is sent more than once, such a message will be revealed as such to an 

eavesdropper; (2) an eavesdropper's guess of the message could be verified by 

encrypting the guess with the public key and then checking if the resulting bits 

are identical to the sealed message. 

Signing . Authentication in public key cryptosystems is much more useful 

than that provided by conventional cryptography, because only a public key is 



needed to authenticate a message, and hence anyone, not just the holder of a 

secret key, can check the authenticity of messages. Someone signs a message 

by encrypting it with their own private key. If a serial number of some agreed 

upon structure, such as all zeros for example, is joined to the message during 

signing, then its presence after decryption with the corresponding public key 

authenticates the signature. 

Compression Functions 

The so called "one-way" functions were introduced by Purdy [74] as part of 

the now familiar method of protecting passwords stored in computer systems. 

The one-way function and the image of all the passwords under the function are 

publicly readable, but they must be protected from alteration. Thus, the ideal 

one-way function is easily computed, but the inverse is computationally infeasi

ble. 

For the present work, a compression function will be a special kind of one

way function which maps an arbitrarily large domain into a fixed range, but 

which is practically impossible to invert. Such functions are quite handy since 

they in effect allow a relatively small number of signed bits to authenticate a 

large number of bits. Similar concepts have been described by various authors. 

{see Feistel [70] or Needham and Schroeder [78] for example.) 

Key Generation 

The automated generation of true physical random numbers has received 

some attention in the literature {see Knuth [7] for example). Sampling the noise 

generated by specially fabricated noise diodes seems to be an excellent source 

of raw bits (thermal noise and radioactive decay also seem good, but more 

cumbersome), which must then be corrected for bias in the detector. 
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Techniques for perfect correction of independent events with a fixed-bias detec

tor are widely known. (Notice, however, that detector drift and physicl depen

dencies in the source contribute to less than perfectly independent raw bits.) 

The simplest such technique takes as input successive pairs of independent bits 

and outputs say a 1 bit for pairs of the form 1 0, outputs a 0 bit for pairs of the 

form 0 1, and produces no output for the other possible pairs 1 1 and 0 0 [Von 

Neuman 51; Gill 72]. It is also possible to combine many random numbers of 

some less than optimal entropy to produce a single number of increased 

entropy, such as by adding many numbers bit-wise modulo-two. 

While details are beyond the scope of the present work, it is important to 

notice that many cryptographic algorithms may be quite weak for some choices 

of key. Care must be taken to determine if a candidate key is such a weak key 

and to randomly create another candidate in such a case. 

§2 Applications of Cryptography 

Discussed are some or the relatively few publications which assume 

good cryptographic algorithms and go on to consider applications. 

Many kinds of security rely on the secrecy of their techniques. In contrast, 

much of the open literature on cryptography owes its existence to the premise 

that such secrecy may not be necessary or even desirable with cryptographic 

techniques. Shannon [ 49] assumes that the cryptographic algorithm is known to 

the "enemy" and only the key is secret. Kerckhoffs [ 1883] made a similar 

assumption. Baran [64] provides convincing arguments for making public the 

details of what he calls "cryptographic design" which includes the "hardware 

details". 

There has been much work that considers the use of encryption for com

munications security and data security. The remainder of this section mentions 

some of the more relevant work in these areas. Work with a heavy emphasis on 
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the cryptographic algorithms themselves has been omitted, however, since this 

thesis is not concerned with particular cryptographic algorithms. 

Communications security 

Protocols that provide secrecy and authentication of communication 

between two devices using conventional cryptography are relatively straightfor

ward and have been touched on by many authors, among them are Feistel, Notz, 

and Smith [75] and Kent [76]. Public key protocols for this kind of communica

tion are similar to those based on conventional cryptography [Needham and 

Schroeder 78]. 

Key distribution . With conventional cryptography, the channel used to ori

ginally transmit the key from one participant to the other must provide both 

secrecy and authentication. Also, O(nZ) keys can be required when n partici

pants wish to converse amongst themselves using conventional cryptography. 

Heinrich and Kaufman [76] and Branstad [75] described an approach to distri

buting these keys that uses a central trusted device. (The techniques of the 

present work would be ideal if such an approach were to be used in an appUca

tion with mutually suspicious participants.) Needham and Schroeder [78] 

describe both a centralized scheme and one in which the participants each use a 

trusted loc·al device, all local devices having cryptographically secured commun

ication amongst themselves. Diffie and Hellman [76] describe a scheme (devised 

with the collaboration of Lamport) which can only be corrupted by compromise 

of all of some fixed set of trusted devices. 

The key distribution problem was at least part of the impetus for the two 

independent proposals of public key cryptography (Merkel [78] and Diffie and 

Hellman [76]). Only O(n) keys are required by systems of the kind proposed by 

Ditiie and Hellman. The key distribution problem is further simplified because 
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neither kind of system requires keys to be kept secret during distribution-only 

their authenticity must be ensured. 

Traffic Analysis. The problem of keeping confidential who converses with 

whom, when and how much they converse, will become increasingly important 

with the growth of electronic mail. The problem of keeping an adversary from 

learning anything about the timing, amount or routing of messages in a com

munication system has been called the "traffic analysis problem." Baran [64] 

has solved the traffic analysis problem for networks using conventional cryptog

raphy, but his approach requires each participant to trust a common authority. 

In contrast, a system based on public key cryptography [Chaum 81], can be 

compromised only by subversion or conspiracy of all of a set of authorities. In 

the limiting case, each participant can be an authority. 

The last approach allows one correspondent to remain anonymous to a 

second, while allowing the second to respond via an untraceable return address. 

This permits rosters of untraceable digital pseudonyms to be formed from 

selected applications. Applicants retain the exclusive ability to make digital sig

natures corresponding to their pseudonyms. Elections in which any interested 

party can verify that the ballots have been properly counted are possible if 

anonymously mailed ballots are signed with pseudonyms from a roster of 

registered voters. Another use allows an individual to correspond with a record

keeping organization under a unique pseudonym which appears in a roster. of 

acceptable clients. 

Data Security 

Conventional cryptography has received some consideration as a technique , 

for protecting stored information. The use of encryption to protect objects 

within operating systems, first suggested by Peterson and Turn [67], suffers 
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from the problem of key management. One might argue that whatever tech

niques were applied to protect the keys, might have been applied to the data 

itself, thus eliminating the need for encryption. But advantage can be taken of 

the small, fixed-size of the keys. 

The use of cryptographic techniques to protect data stored in a potentially 

hostile environment are relevant to the present work. There are three impor

tant considerations for protecting stored data, each corresponding to one of the 

issues of secrecy, authentication, and traffic analysis in the context of communi

cation. First, if the same data is stored more than once under the same key, 

then some non-repeating data, such as the random serial number used in seal

ing, must be included in the data lest the repdition be revealed. Second, it may 

not be sufficient to be able to authenticate the memory location associated with 

a page received from storage if data has been stored at that location more than 

once; a solution to this, the "most recentness" problem, must be provided so 

that the page can be authenticated as the last copy written. (Solutions to this 

problem which also solve the first problem are presented in the work of Bayer 

and Metzger [76] mentioned below.) Finally, the pattern of read and write 

accesses must be considered as a possible source of information to an adver

sary. A most general solution to this last problem, which makes no assumptions 

about the application program, might be to alternately read every stored loca

tion ever written and then to perform a fixed number of writes. Clearly this is 

not an attractive solution, and much more reasonable solutions, possibly includ

ing the introduction of some bogus requests, can be developed by careful design 

of the application program. 

An interesting technique has been developed for encrypting information 

which is divided into pages. A different key is used to encrypt each page. The 

key used for a particular page is produced by encrypting the address of the 

page using a master key. Mapped addresses (so that addresses can be changed 
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for new versions of a page) and physical addresses are considered by Bayer and 

Metzger [76]. Content addresses have been dealt with by Gudes, Koch, and Stahl 

[70]; and by Flynn and Campasano [78]. 

Some simple systems have actually been built that encrypt data at a secure 

site before transmitting it to an un-secured data base management system 

[Notz and Smith 72; Carson, Summers and Welch 77]. The terminals or their 

users are presumably the only holders of the keys so that only they can access 

the data. 

§3 Partial Key Techniques 

Various solutions to the problem of dividing a key, or other secret 

information, between individuals or other entities are presented. 

Feistel [70] describes schemes in which a cryptographic key is divided into 

n parts, each part is given to a different person, and the original key can be re

created by combining all n parts. These schemes use random bits for each part 

except the last, which is chosen so that the desired key is the bit-wise modulo

two sum of this last part and the rest of the parts. A disadvantage of such 

schemes is that if just one part is lost, then the original key can not be re

created. 

The technical report on which this thesis is based (Chaum [79]) introduced 

a scheme for dividing a key into parts, called prtrtial keys, in which some 

selected subsets of the partial keys are sufficient to re-create the original key. 

The approach used was based on multiple encryption. Independently, and at 

about the same time, Blakley [79] and Shamir [79] published more elegant 

schemes which do not have the inherent flexibility of the multiple encryption 

schemes, but can use less space and run faster for large n when the required 

sets are all possible sets with cardinality greater than some fixed number. 

These techniques are unbreakable as is the Vernam cipher mentioned earlier, 
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and the Vernam cipher has even been called a degenerate case of these tech

niques [Blakley 80]. Further work by Azmuth and Bloom [80] includes means for 

determining which if any partial keys submitted for a re-creation are bogus. 

§4 Computer Security 

The field of computer security is divided into four areas, and each is 

dealt with in a separate subsection. 

Computer security is the topic of several journals, several annual confer

ences, dozens of books, thousands of articles in the technical literature, and 

many more pieces in the popular press. It is far beyond the scope of the 

present work to try to survey this vast literatt:re. 

For the purposes of this section, the field of computer security is divided 

into four broad groups of concerns: 

(1) issues related to personnel and their access to facilities; 

(2) design of desired security properties; 

(3) verification of implementation of the desired security properties; 

(4) physical security of equipment against probing and modification. 

Survivability issues are covered in the next section. 

Personnel 

Discussion of personnel issues are liberally sprinkled throughout the com

puter security literature, particularly that aimed at the practitioner. From the 

technical point of view, the major issues with respect to personnel are how to 

reduce the exposure to personnel, and then how to force conspiracies of persons 

for what exposure remains. Essentially two ways to force conspiracy are used. 

The most desirable mechanisms are those which can force equally knowledge-

15 



able persons to conspire. For example, the so called "two man rule," used for 

control of nuclear weapons, may require that two keys located at substantial dis

tance from one another be turned simultaneously. A somewhat less appealing 

but much more widely used approach is to attempt to limit the knowledge of 

individuals to such narrow aspects of a system that they must conspire with oth

ers in order to have the knowledge and skills required to compromise the sys

tem (see [FDIC 77] for example). Since the present proposal uses equipment 

which is essentially inaccessible to perso!'lnel, and techniques which are a gen

eralization and extension of the two man rule, many of the personnel issues are 

not particularly relevant. 

Other questions raised in this literature include: How can trustworthy per

sonnel be selected? What sort of "access control" mechanisms are appropriate 

for controlling the movements of people into and within a facility? What is the 

best way to motivate compliance with security relevant rules? and How can the 

user interface of the security mechanism best be designed so as not to 

encourage bypassing by the user? 

In any system in which personnel must be trusted, the possibility always 

exists of influence by positive means such as bribery, negative means such as 

blackmail, and the combination. Also, one can never be sure that a person's 

behavior will remain uniform. For example, stress in personal life, breakdown, 

suggestion and drugs can cause substantial changes in behavior. 

Protection 

In some dedicated applications, such as some of those mentioned earlier for 

which the present work may be particularly well suited, answers to the question 

Who can make what kind of accesses to what data? may be quite obvious and 

simple. In more general purpose systems, such as operating systems and data-



base management systems, it may be difficult to decide on a way to describe the 

kinds of accesses allowed. There may be various design objectives, such as, 

closeness of fit to anticipated application requirements, ease of user under

standing, implementation efficiency, appropriate default rights, congruence with 

user motivation, and convenience of use. 

For operating systems, the proposed access control models are often 

divided between the "access control matrix" approaches [Lampson 74], and the 

"information fiow" approaches [Denning 76]. In the access control model, a 

matrix contains the type of access allowed by each of a set of subjects to each of 

a set of objects. Data fiow is a generalization of the U.S. classification scheme, 

which was based on the British scheme, where information is allowed to fiow up 

to higher classifications but not down to lower classifications. Recently, Stough

ton [81] has proposed a synthesis of the two approaches. In database manage

ment systems, the protection structures proposed may be divided between the 

access control style and the value dependent. An interesting approach called 

query modification has been suggested [Stonebraker 75], in which additional 

restrictions are automatically appended to each query before it can be pro

cessed. 

The general case is further complicated because provisions must be made 

which allow access rights to be changed and even for the rights related to who 

can change access rights to themselves be changed. Much theoretical work, 

such as that of Harrison, Ruzzo & Ullman [76], demonstrates that it may not be 

practical to determine who ultimately may access what, even with rather limited 

kinds of transfer rights. 

In general, when preventive means are not available, it may still be possible 

to preserve a record which reveals abuses. Thus, various "logging" or "audit 

trail" techniques have been proposed, such as those of Weissman [69]. 
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Verification 

ln the present context, verification is intended to mean the process of 

developing certainty that some formally described mechanism has some desired 

properties; the term certification is used here to mean that some physical 

mechanism "conforms" to the formal description. This subsection points into 

the relevent literature on verification; little has been found in the literature on 

certification (but see Weisman [69]), a topic which is covered in Chapter IX. The 

field of program verification was given a formal foundation by Floyd [67]. He 

defined a program to be "partially correct" (with respect to some input and out

put assertions) if the truth of the input assertions before program execution 

guarantees the truth of the output assertions after program termination. (A 

"totally correct" program was a partially correct. program whose execution is 

guaranteed to terminate.) He gave a method based on inductive assertions for 

determining partial correctness of programs. Proof techniques for parallel pro

grams have also appeared (see Ovd.cki and Gries [76] for example). Proving pro

perties about cryptographic protocols is also receiving attention (see Dolev and 

Yao [81] for example). 

A variety of automated specification and verification systems have been 

developed and are extensively used for security work (see Cheheyl et al [81] for 

a recent s·urvey). In such systems, formal specification languages are used to 

define the intended function of a module, while omitting as much implementa

tion detail as possible (see Rammamoorthy and So [81] for a survey). For exam

ple, the HDM (Hierarchical Design Methodology) [Robinson and Levit 77; Levitt, 

Robinson and Silverberg 79] uses the specification language presented by Parnas 

[72] to describe systems as a hierarchy of abstract machines. (The Parnas 

specification language is extended in Chapter V and used to present the algo

rithms proposed here.) Global and local security properties of programs execut

ing on multiple processors, and employing cryptographic techniques, of much 
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the same order of complexity as those algorithms presented in Chapter V have 

recently been verified [Good et al 82]. 

§5 Physical Security 

The little open literature ~n protecting equipment from probing and 

modification is considered. 

Shielding techniques for protecting mechanisms against analysis of their 

radiated signal energy, or probing by externally supplied energy, seem to be 

rather well understood, and are covered by the classified TEMPEST 

specifications. 

Tamper-sating systems can be divided between those which merely indicate 

tampering to an inspector, and those systems which can detect tampering and 

can respond by, for example, destroying some secret information. In some 

cases it may be desirable to augment a tamper-responding system with tamper

indicating techniques and periodic inspections. (See the next chapter for more 

on combinations.) There is a small amount of unclassified literature on tamper

indicating techniques [Poli 78], but almost nothing on high level tamper

responding techniques-but see Chaum [82]. 

One approach to the problems of TEMPEST and tamper-sating includes plac

ing apparatus to be protected in relatively inaccessible locations. For example, 

satellites or satellite platforms may provide an ideal location because it 

becomes very difficult to surreptitiously compromise equipment in such a visi

ble and inaccessible location, or to get close enough to obtain an acceptable sig

nal to noise ratio from even moderately well shielded equipment. (Such loca

tions may also be quite attractive because of the kinds of communication chan

nel typically provided by satellites, as mentioned later.) 

Another location which has great potential, and has actually been used for 

protecting apparatus (see Sandia [81] for example), is the bottom of well holes 
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in rock formations. Seismic sensors do a good job of detecting attempts to 

come even moderately close to the protected apparatus. 

Installations in office building environments are also possible. While it is 

beyond the scope of the present work to discuss the various possibilities for 

solving these problems in less remote locations, it may suffice to point out that 

tamper safing and shielding have obvious importance in intelligence and military 

systems, and one can safely assume that these problems have been adequately 

solved for these applications. Thus, it appears that the physical security 

requirements of the applications considered earlier are quite reasonable. 

§6 Survivability 

This section surveys the issues in survivable systems, which include 

barriers or hardening, redundant communication, redundant 

storage, and reliable mechanisms. 

As in the previous section, the requirements of the kinds of applications 

considered will appear quite practical based on the following discussion. 

Barriers 

The problem of providing substantial resource requirements and delays to 

would be penetrators has been referred to as the barriers problem in the 

nuclear safeguards literature [Sandia 78]. Acceptable barriers for some applica

tions can be provided by concrete and steel structures, but more sophisticated 

barriers are constantly under development by the manufacturers of better safes 

and vaults. Such developments are rarely published and are only alluded to in 

sales literature. Unfortunately, the so called "shaped charge" can almost 

instantly penetrate any barrier of reasonable thickness. But, quite satisfactory 

barriers can be provided by placing equipment to be protected in inaccessible 
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locations, such as the well holes described in the previous section. 

Reliable Equipment 

Largely because of developments in space and aviation, computer systems 

and related equipment have been developed which use redundant mechanism to 

achieve extremely high reliability. (See Randell et al [78] for a relatively recent 

survey.) Some of these advances are already enjoying widespread use in earth

bound business transaction processing systems, and are likely to become 

increasingly more widespread because of trends such as decreasing hardware 

costs and increased dependency on real-time systems. Thus, for the sorts of 

applications the present work is directed at, highly reliable systems may be 

rather common. 

Survivability of Data 

One very nice thing about safely encrypted data is that a proliferation of 

copies does not pose any additional threat to security, but it has great potential 

for increased survivability. Multiple copies of encrypted data can exist at a 

variety of sites, some of which may be hardened. Also, when broadcast style 

communication channels are used, locations which are maintaining copies of 

data may not even be known to the issuer of the data, and might therefore be 

extremely difficult for an adversary to even detect. Today, several companies 

provide secure data storage sites for magnetic recording media. Some of the 

facilities are located deep within mountains while another is in an abandoned 

telephone switching center which was hardened to withstand a several megaton 

blast. 
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Survivability of Communication 

The ability to communicate in spite of an adversary is of obvious impor-

lance for military applications. The use of redundant and alternate channels is 

one standard approach to the problem [Frank & Frisch 70]. Other more 

effective approaches are under development and in use, however, they receive 

little coverage in the literature. One important approach is the use of crypto

graphically controlled "spread spectrum" radio techniques, which provide a 

broadcast signal which is nearly impossible to jam [Haakinson 78]. Also highly 

redundant error correcting codes can greatly increase the survivability of 

transmissions in a noisy environment. 

§7 Related Work 

A few extended citations give credit to some relevant earlier work. 

It seems appropriate to include this section to put the present work in per-

spective with some proposals of others addressed at similar problems. 

Feistel might be called the father of modern conventional public cryptogra-

phy. His plan and motivation for non-military use of cryptography comes 

through in the first part of his introduction to "Cryptographic Coding for Data-

Bank Privacy," which is excerpted below. This document remained classified 

"IBM CONFIDENTIAL" for a couple of years after it originally be came a 

"Research Report" in 1970. 

A Data Bank is essentially a machine to machine com
munications network in which input terminals are con
nected to a centrally located computer, the physically 
secured CPU. 

The most outstanding feature of the kind of network 
structure we are talking about is that it must function reli
ably in a hostile environment. Secrecy in the usual sense, 
that is concealment of the meaning of the messages 
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conveyed, would form the basic element of protection. This 
is required to insure the privacy of those forming the data 
bank community. But machine communications systems, in 
conlrast to systems which can enlist the subtle filtering 
capabilities of the human brain are very sensitive to 
interference and deception. Without special protection 
computers are easily fooled and this can become an intoler
able burden to a data bank operation if this remains unno
ticed. Both accidental and intentionally designed errors 
must be detected with very large safety margins. A 
machine to machine communications network requires a 
properly secured method which assures the receiver that all 
incoming communications are of legitimate origin and 
uncorrupted. In military systems such methods are called 
authentication. We shall present a method called central
ized verification. In contrast to militar;-y systems, where all 
participants have the same key, our system emphasizing 
individual privacy permits each individual member of the 
data bank to have his own private key .... 

The heart of our Data Bank Network is the so called 
Vault, which is properly secured physical location of the 
central data processing facility consisting of a time sharing 
CPU and appropriate storage or filing facilities. 

Schroeder realized, early on, that many important applications of computer 

systems could involve groups with conflicting interests. His dissertation, 

"Cooperation of Mutually Suspicious Subsystems in a Computer Utility," evolved 

out of work on MULTICS under Saltzer, at MIT, and also appeared as a Project 

MAC technical report in 1972. The following excerpts indicate the motivation 

and scope of his work. 

This thesis describes practical protection mechanisms 
that allow mutually suspicious subsystems to cooperate in a 
single computation and still be protected from one another. 
The mechanisms are based on the division of a computation 
into independent domains of access privilege, each of which 
may encapsulate a protected s'ystem. The central com-

. ponent of the mechanisms is a hardware processor that 
automatically enforces the access constraints associated 
with a multidomain computation implemented as a single 
execution point in a segmented virtual memory .... 

In this thesis interest is centered on protection 
mechanisms within computer systems. The viewpoint is that 
of a computer system designer who is intent upon providing 
efficient protection mechanisms applicable to a wide range 
of problems. Questions of privacy influence this effort to the 
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extent of implying criteria which must be met before such a 
computer system can be applied to those problems where 
privacy is an issue. The thesis, however, contains little 
explicit consideration of privacy. 

To further define the scope of the thesis, consideration 
is limited to problems of hardware and software organiza
tion. While it is recognized that issues such as installation 
security, communication line security, hardware reliability, 

· and correctness of hardware and software implementations 
of algorithms must be considered in order to achieve the 
secure environment required for useful application of pro
tection mechanisms, these topics are beyond the scope of 
the thesis .... 

Taken together, the hardware and software mechan
isms described in this thesis constitute an existence proof 
of the feasibility of building protection mechanisms for a 
computer utility that allow multiple user-defined protected 
subsystems, mutually susp1cwus of one another, to 
cooperate in a single computation in an efficient and natural 
way. 

Parker has provided the public with many amusing tales of crimes per-

petrated by individuals against organizations maintaining computer systems. 

While the present work tends to be concerned with protecting individuals or 

groups from organizations maintaining computer systems, the solution 

envisaged by Parker in his 1976 copyright book, Crime by Computer, is quite 

instructive. 

It must become clear to the business community, 
government, and fmally the public that the safety of our 
economy and our society is growing increasingly dependent 
on the safe use of secure computers. 

An ideal secure computer system including data com
munication capability would be one of proven design which 
could be run safe from compromise without human inter
vention. It would be served by computer operators who 
would be allowed only to perform tasks directed by and 
closely monitored by the computer. No maintenance by 
human beings would be allowed in its secure operational 
state. All failures short of being physically damaged from 
an external force would be failsafe, and a failure not 
automatically reparable or overcome would cause the sys
tem to shut down in an orderly, safe fashion and loc).<: up all 



data files in a separate, secure storage. 

It might take four trusted executives, including a spe
cial government inspector, simultaineously to insert and 
turn keys in the system console locks to change the mode of 
operation from "secure" to "open." Then human access to 
modify and repair the system would be allowed. Before 
returning the system to secure state again, a team of audi
tors would go through an elaborate process of reproving and 
testing the secure state . Once the system is again declared 
secure, another group of four executives would simultane
ously turn their keys in the console locks to make the sys
tem again operable in secure state. 
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Chapter III 

Assumptions 

This chapter is intended to make su!Iicient assumptions so that the 

proofs of Chapter VII can be completed. In addition, the fundamental 

assumptions which shape the proposed design are presented. 

In the first two sections of this chapter, notation is presented for the cryp

tographic techniques introduced in the previous chapter, and this notation is 

then used to describe the properties desired of the techniques. Section three 

makes explicit the assumptions about certification used in the proofs of chapter 

VII. (Certification of vaults is covered in Chapter IX.) The last two sections of the 

chapter present the assumptions about physical security and organizational 

structure which shape the design of the proposed systems. 

§ 1 Cryptologic 

Defines exactly what a crypto-system is assumed to make intractable. 

It will be assumed that the possibility of successful "forgery," "sealbreak

ing," or "de-compression" efforts, using feasible amounts of computation, is so 

small that it can safely be ignored. 
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Notation. Someone becomes a user of a public key cryptosystem by creat

ing a pair of keys, Kand J\1
, from a suitable randomly generated seed. The pub

lic key K is made known to the other users, or anyone else who cares to know it; 

the private key J\1 is never divulged. The encryption of X with key K will be 

denoted K(X), and is just the image of X under the mapping implemented by the 

cryptographic algorithm using key K The increased utility of these algorithms 

over conventional algorithms results because the two keys are inverses of each 

other, in the sense that J\ 1(K(X)) = K(K1(X)) =X . 

. Forgery 

A user signs some material X by prepending a large constant C (all zeros, 

e.g .) and then encrypting with its private key, denoted J\1(C.X) = Y. Anyone can 

verify that Y has been signed by the the holder of J\1, and determine the signed 

matter X, by forming K( Y) = C.X. and checking for C. 

A digital signature is forged by someone who creates it without the 

appropriate private key J\1• A potential forger is assumed to have the public 

key K and the ability to have some items of the forger's choice signed. A forgery 

attempt is considered successful if it yields some item Y that has not been 

signed using the private key but for which K( Y) = C.X. regardless of what X is . 

One forgery strategy is to choose values for Y at random, until one is found 

whose decryption with Kyields something with a prefix of C. 

An alternative attack that is of general utility requires only a public key. 

The corresponding private key can be found by using candidate private keys to 

decrypt an item encrypted with the public key, until one such decryption yields 

the original item. 
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Seal breaking 

The sealing of X with K. is denoted K(R,X), where R is a random string. 

A potential sealbreaker is assumed to have the public key K. a set of items 

of uniform size and another set containing the items of the first set in sealed 

form. A successful sealbreaker knows something about the correspondence 

between the elements of the two sets. One sealbreaking strategy is to guess the 

random information R that was used to seal one particular item from the 

unsealed set. Prepending the guess to the item and encrypting with the public 

key would yield an item from the set of sealed items only if the guess were 

correct. This would reveal a single correspondence. 

De-com pression 

A compression function F maps a large string of domain bits D into a 

roughly key-sized string of bits R. The adversary is assumed to have the func

tion F, an element of the domain D of interest., and of course R = F(D). The 

adversary is successful if a second element of the domain, D', can be produced 

such that D' ¢ D and R = F(D'). 

§2 Partial Key Techniques 

Defines what is expected of a partial key technique, and also makes 

significant assumptions about their use. 

It is assumed that the possibility of someone not privy to the seed or 

sufficient partial keys being able to determine anything about the original key 

which was divided is so small it can safely be ignored. Also, knowledge of even 

chosen partial keys never gives any clue about the seed used. 
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The entities holding partial keys in this thesis will be assumed "equally 

capable". In other words, they will be a homogeneous set, any subset of cardi

nality greater than the threshold value established for the partial keys will be 

sufficient to reconstruct the original key. A similar homogeneity assumption will 

be made about other kinds of voting as well. These assumptions strongly flavor 

the approach presented in the following chapters. The possibility of other 

approaches is mentioned in Chapter X. 

§3 Verification & Certification 

Defines the requirements of verification and initial certification. 

Assume that mutually suspicious groups can know that the plan for a vault 

has the desired properties and that the vault operates correctly according to 

the plan, as a result of some verification and certification procedures. 

Verification was discussed in the previous chapter; some new approaches to per

forming certification are the topic of Chapter IX. 

§4 Physical Security & Survivability 

Potential attacks on a vault are described and compared. 

This section presents a list of possible attacks on a vault. The results of 

these attacks vary from total covert control of a vault by an attacker, to simple 

destruction of a vault. The following is a summary of the potential threats 

against a vault, roughly in decreasing order of difficulty: 

(1) Surreptitious corruption-vault has been modified, and secret keys within 

vault may be known; the attack is not detectable by inspection; both 

tamper-indicating and tamper-responding mechanisms have been defeated. 

(2) Detectable corruption-same as (1) but inspection will reveal at least 

attempted tampering; tamper-indicating mechanism has n.ot been defeated. 
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(3) Compromise -secret information within the vault has become known to 

attacker, but the attack leaves no trace; attack may consist of probing, lim

ited compromise of the tamper-sating mechanism, exploitation of 

weaknesses in the TEMPEST techniques employed, or possibly cryptanalysis. 

(4) Covert isolation -node kept from communicating with anyone except 

attackers; node presumed dead to observers; may be a difficult attack 

where broadcast style communication channels are used. 

(5) Overt isolation-communication with outside blocked; attack obvious to 

observers; e.g. jamming in a system with broadcast style communication. 

(6) Destruction-vault is disabled. 

§5 Organizational Structure 

Defines the three tier organizational structure assumed for the most 

elaborate application of the proposed systems. 

Chapter I mentioned the existence of one group in a computer application 

that is particularly concerned with reliability and survivability of the system. 

The systems design proposed in subsequent chapters further divides this group 

into three different bodies, called trustees . The analogs of these bodies in a cor

poration might be its officers, directors, and stockholders. The following table 

summariz~s the functions and exposure to the three levels of trustees: 

(1) trustee level 1-charged with day-to-day operations of the system, which 

include implementing a policy which balances survivability and perfor

mance, within the policy constraints formulated by the trustees at level 2; 

has no significant advantage in attacking security over anyone. 

(2) Trustee level 2-charged with policy formation aspects of trusteeship, in 

which the trustees at level 2 must define how difficult it will be for them and 

also bow difficult it will be for others to defeat the system. to decide which 



new vaults will be used; will be able to compromise some security proper

ties without any attack, but only after giving advance notice. 

(3) Trustee level 3 -charged with the ability to restore the whole system in the 

event of disaster; can perpetrate certain threats without any attack. 
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Chapter IV 

Single Vault Systems 

A simple single vault system is presented to introduce and illustrate 

some of the basic ideas of the proposed systems, and also to motivate 

and define the problems to be overcome by multiple vault systems. 

When a certified vault is first constructed by the techniques presented in 

Chapter IX, a suitable public key and its inverse private key are chosen by a 

mechanism within the vault's protected interior, using a physically random pro

cess as discussed in Chapter II. The public key is then displayed outside the 

vault, on a special device certified for this purpose. As far as the world outside 

the vault i~ concerned, the possessor of the vault's private key is the vault: it 

can read sealed confidential messages sent to the vault, and it can make the 

vault's signature. 

§1 Checkpoints & Restarts 

Introduces the notions of encrypted checkpoints and the restarts 

they can allow trustees to perform. 



What if Something Goes Wrong? 

If a vault were totally destroyed, computation would be safely halted -no 

secret information would be revealed, and the vault would not have taken any 

improper action. Other conditions might require an equally safe halt to compu

tation. If a tamper-responding system detects an attempt to penetrate the 

vault's protective enclosure, or a fail-safe mechanism determines that the 

vault's contents can no longer be counted on to operate correctly, then the 

information stored in the vault, including the vault's private key, must be 

erased. 

This information will be encrypted in a special way, and saved outside the 

vault, so that a safe recovery can be provided. The encryption of the vault's con

tents, which includes its private key, is called a checkpoint, and is detailed 

below. At suitable intervals, checkpoints are formed, and then stored outside 

the vault. In some cases, there may be time to issue un-scheduled checkpoints 

before an emergency requires the vault's contents to be erased. 

The primary consideration behind the design of an encryption method for 

checkpoints is that there exists a means to decrypt them, but only at the 

appropriate time and place. The decision that some newly sealed vault can, and 

should, be given the ability to decrypt a checkpoint is necessarily a human one. 

Assume, for now, that the decision is to be made by unanimous consent of a set 

of human trustees. Before a checkpoint is released by a vault, it is encrypted 

with a special key for this purpose. Conventional as opposed to public key cryp

tography can be used for this. This key used to encrypt checkpoints will be 

divided into partial keys, one key for each trustee. 

Public key cryptography will be used to distribute these partial keys to the 

trustees in a secure manner. As part of the certification process, the vault is 

supplied with a public key issued by each trustee. Thus, the vault can ensure 

the confidentiality of the partial key it sends each trustee by sealing that partial 
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key using the trustee's public key. Each trustee now has two keys to keep 

secret: a private key used to unseal messages received, and a partial key that 

will be used in connection with decrypting checkpoints. 

Restarts 

A restart is the process by which a freshly sealed vault resumes the compu

tation whose state has been saved in a checkpoint. After a replacement vault is 

certified and sealed, it forms a temporary public key and its inverse private key 

from a random seed, and then displays the temporary public key, as the per

manent public key was displayed in the origi.nal start-up. Then the restarting 

vault receives partial keys from the trustees. A trustee provides the secrecy of 

its partial key while it is in transit to the vault by sealing it with the displayed 

temporary public key. 

Having received and decrypted the partial keys , the computation within the 

replacement vault merges them to form the key originally used. to encrypt 

checkpoints, and uses this to decrypt the checkpoint received. The replace

ment vault then bootstraps itself into the state saved in the checkpoint. Thus, 

the original public key found in the checkpoint is reinstated, and the computa

tion within the replacing vault becomes an exact copy of the original computa

tion. The restarted vault can then be safely brought back up to date by re

playing all the messages sent it since the checkpoint was made . 

§2 Limitations of Single Vault Systems 

Several kinds of abuse of single vault systems by the trustees are 

described and solutions using multiple vault systems are sketched. 

It is generally held that networks of computers may be better than a single 

centralized computer system in many applications, for such reasons as 
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improved performance, increased reliability, and decreased communication 

costs. The multiple vault systems to be presented in the following chapters may 

be preferred over single vault systems for similar reasons. In addition to the 

usual advantages, however, multiple vault systems offer solutions to many of the 

problems of single vault systems: 

Destruction of Information. In a single vault system, the partial keys 

held by the trustees will always be sufficient to decrypt any previous checkpoint. 

Thus, a conspiracy of a sufficient subset of the trustees will have access to all 

information, no matter how old the information is . In a multiple vault network, 

however, the trustees will be forced to request certain partial keys from the net

work during a restart in order to obtain sufficient partial keys to decrypt a 

checkpoint. The network will change the keys used to form checkpoints, and the 

partial keys it maintains, in such a way that obsolete checkpoints can never be 

decrypted. (A conspiracy of trustees in a single vault system need never be able 

to forge a vault's signature, since a private key used by a vault only for making 

signatures need never be saved outside the vault.) 

Comprehensive Record of Restarts. In a single vault system, a conspir

ing subset of the trustees can secretly combine their partial keys and obtain 

keys sufficient to allow them to decrypt checkpoints. In the multiple vault sys

tem, the trustees will have to request partial keys from the network to accom

plish a restart, as mentioned above, and the network will be able to maintain a 

record guaranteed to include descriptions of all such requested restarts. Such a 

record is very useful because it can ensure that only certified vaults have 

decrypted checkpoints, and that they have done so only during certified res-

tarts. 

Advance Notice of Security-Relevant Changes . In a single vault system, 

the trustees can perform a restart using a vault which is certified but which con

tains an arbitrary change in the security-relevant aspects of the vault's 
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operation. For example, the new vault may give greater power of inspection or 

modification to the trustees. In multiple vault systems, the trustees can be 

required to give advance notice of security-relevant changes, such as the public 

keys of vaults to be added into the network and changes in parameters used by 

the network to protect itself from the trustees. 
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Chapter V 

Multiple Vault Systems 

Algorithms to be performed by a collection of vaults are defined 

using an extended formal specification language. 

§ 1 Introduction to Algorithms 

An overview o[ the algorithms proposed is presented which includes 

the relationship of this chapter to other chapters. 

This chapter describes a collection of algorithms to be performed by a 

number of separate vaults, or nodes. Each node will perform essentially the 

same algor~thms, but some of its own state may vary. The algorithms are organ

ized as a set of a dozen and a half independently callable routines . A node will 

perform any one of these routines on request, if it is provided with the appropri

ate actual parameters. Typically, some of the actual parameters of a call will 

bear digital signatures formed by other nodes in the system and also by various 

trustees. 1f these signatures and the rest of the parameters prove acceptable to 

the called routine within a node, then the node may alter its state and/or pro

duce some signed and possibly sealed output as a result of performing the called 

routine. Calls are handled one at a time by a node, so that once a node com-
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pletes processing of one call, it begins waiting for the next call to be requested. 

The nature of the algorithms and their use of cryptographic techniques 

ensure that: (1) the various security properties provided by the system can not 

be violated by any sequence of calls, and (2) the trustees can maintain the reli

able operation of the network by performing suitable sequences of calls. 

Chapter VII argues these points; the present chapter uses a specification 

language to describe a practical version of the algorithms. 

Among other things, the algorithms must provide a kind of synchronization 

and agreement among nodes about allowing new nodes into the network, remov

ing nodes from the network, and the status cf nodes once in the network. The 

routines will be called a-functions (for Operation function) since they are an 

extension of the a-functions of the Parnas specification language [Parnas 72], as 

mentioned in Chapter II. Figure 1 shows seven of the major a-functions. These 

a-functions can change the membership of the network and the status of nodes 

within the network. For example, the CERTIFY a-function can bring a new node 

into the network, leaving the new node in the "initiate" state . Similarly, 

REMOVE_NODES can take a node in the "participated", "veteran" or initiate 

states out of the network. These and the other a-functions will be described in 

detail in sections 6 and 7. 

Section 2 introduces the basic types, primitives and constants of the 

specification language. Section 3 and 4 define the state of nodes as a collection 

of ll-functions (for Value function), which have been extended to include types 

not in the original Parnas notation. Section 5 defines the rather powerful 

parameter passing mechanism used both for input and output by the a

functions, which is an extension of the Parnas notation. Finally, as mentioned 

above, sections 6 and 7 present specifications of the a-functions themselves. 
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Strictly speaking, a specification language is intended to define what a pro-

gram is to do-and not how it is to do it. Nevertheless, it will be very convenient 

to apply the familiar terminology of programming languages to the specification 

language used here. The presentation of the specification language will also use 

a variety of type fonts and type sizes, roughly based on those used by Parnas 

[72] . Some symbols will appear in upper case, others in lower case, and a few 

others will combine the two. A summary of the typographic conventions is 

presented in Table 1. 

primitives & constants 
synlax-Tne ta-s-r.Jmb ols 
pseudo-types 
types 
type-constructors, if then else & with 
PARAMETEILNAMES & TEMPORARY_ VARIABLES 
V-FUNCTJON_NAMES & D-FUNCTJON_NAMES 
AGGREGATE-FUNCTION_NAMES 

Table 1. Typographic Conventions 

§2 Simple Types, Primitives & Constants 

The basic data types of the specification language and the elemen

tary operations which can be performed on them are presented. 

The specification language is strongly typed, although some primitive func 

tions can have arguments of any type . Some primitive functions have no argu

ments, but those entities with fixed values are called constants. 
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Simple Types 

Some of the simple types are those usually found in programming 

languages. Others are the keys, seeds, and parts of keys used by the crypto

graphic transformations. Yet others are simply enumerated types, ala Pascal, 

used as tags included in signed messages to indicate the kind of message. A 

special type is used to represent node names. Chapter Vlll contains some dis-

cussion of straightforward representation schemes for instances of the simple 

types, and the constructed types of the next subsection, for purposes of 

analysis, but further consideration of implementation techniques is beyond the 

scope of this work. 

A simple context free grammar will be used to illustrate the basic syntax of 

the specification language. The first production of the grammar is shown here: 

elementary-type --) boolean I integer I time I node-id I 
seed I public-key I private-key I partial-key I 
proposal-kind I announcement-kind I action-kind I transfer-kind 

The following is a detailed definition of each of the elementary types: 

boolean, integer The usual. 
time The content of a clock or counter. Uniform units are used so 

that the difference of two times produces an integer which is 
proportional to the amount of time between the two times. 

node-id A special type whose values are used to uniquely identify nodes 
and trustees, and whose values are never re-assigned. 

seed A randomly selected value preferably from a space at least as 
large as the space of possible keys , which is returned by the 
primitive function create-seed and is used by the primitive 
functions create-public, create-private, and form-partial, to 
create keys and partial-keys. 

public-key A public key that was created by a call to creat~-public. Gen
eraly publicly available, and can be a parameter m calls to seal 
and check-signature. 
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private-key A private key that was created by a call to crea.te-priva.te. Gen
erally kept secret by its creator, except may be transferred 
during a RESTART. Used in calls to sign and unsea.l. 

partial-key A partial value of a private-key that is created by a call to 
formrpa.rtial. Sufficient quantities of these keys can be used by 
merge-pa.rtials to reconstruct the private key from which they 
were formed. 

proposal-kind This is an enumerated type, a. La. Pascal, whose values are 
denoted by the constants: propose-certify propose-set-minima. 
and proposeJT"emove . They are used as inclusions in signed pro
posals of the corresponding names. 

announcement-kind 
An enumerated type, whose values are used as inclusions in 
announcements of proposed actions of the corresponding 
names. The unique values are denoted by the constants: cer
tify, set-minima., and remove. 

action-kind Used as an inclusion in signed announcements of trustee level 1 
actions. The unique values are denoted by the constants: pro
pose, ca.ncel, a.pply, cha.nge-presents, resta.rt, pa.rticipa.te, 
crea.te-keys, and cha.nge-keys. 

transfer-kind Used as an inclusion in signed output generated by an a
function and intended to be consumed by one or two different 
a-functions. The unique values are denoted by the constants: 
RESTARLto_ASS UME_APPL!CATION, 
PARTIC!PATE_to_RECE!VE_NEW_PARTICJPANT, 
PARTIC!PATE_to_NEW_PART!C!PANLRECEIVE. 
CREATE_KEYS_to_/SSUE_NEW_PART!ALS&CHANGE_KEYS. 
CREATE_KEYS_to_NEW_PARTJCJPANLRECEIVE, 
JSSUE_NEW_PARTIALS_to_RECE/VE_NEW_PARTIALS, 
RESTARLto_ASSUME_APPL!CAT!ON, 
pa.rtia.lsJT"eceived, proposa.l, and checkpoint. 

Constructed Types 

The elementary types of the previous subsection may be combined into sets 

or tables. This is an extension of the original notation proposed by Parnas and 

further developed for HDM [Levi, Robinson and Silverberg 79], but resembles the 

sets and maps of the SETL programming language [Dewar, Schonberg and 

Schwartz Bl]. A set of some elementary type is just an unordered collection of 

elements of the type. The usual set operators will be found in the next section. 

A table is much like a one or two dimensional array, but it may be sparse and 

have non-integer subscript types. The following gives a syntax for these 
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constructed types: 

simple-t11Pe ~ elementary-t11Pe I 
set of elementary-t11Pe I 
table[elementa71rtype] of simple-fwe I 
table[ elementary-type ][elementary-type] of simple-t11Pe 1· 

Examples of these constructed types will be found in each subsequent. section of 

this chapter. 

Simple Primitives 

These primitive functions take zero or more parameters, and return a value 

of a simple type. Some are generic in that some parameters need not be of any 

particular simple type. Such parameters will be shown as type m:ty-type. Many of 

the primitives are familiar, like those needed to determine the current time and 

perform the usual arithmetic, set, and boolean operations. 

A few of the primitives perform the cryptographic functions which were 

introduced in Chapter II and formalized in Chapter III. Functions are defined 

which create seeds, create keys and partial keys from seeds , and merge partial 

keys. The following identity provides an example of the use of the partial key 

primitives. It simply asserts that partial-keys formed from a key using a com-

mon seed can be merged back into the original key. 

if s =create-seed() then 
memerge-partials(Jor7Tirpartial(1, s, m, 2),form-partial(2, s, m, 2)) 

The following provides detailed definitions of the primitive functions. 
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ere ate-seed()-+ seed 
Returns a seed derived from a physically random process 
within the instant node, and has no parameters. 

ere ate -public ( s : seed)-+ public-key 
Returns a public key that is a function of the parameter, seed s. 

create-private (s:seed) -+private-key 
Returns a private key that is a function of the seed s. The 
private key corresponds to the public key created by a call to 
create-public with the same parameters. 

JorTTlr']J artial ( n:~m.y-type , s :seed a.: ~my-type , m:integer)-+ partial-key 
Returns a partial value of the parameter a, with a threshold 
value of m (see merge-partials), using seed s. Calls with 
different values or types for n produce distinct partial values. 
m different partial values created with identical s are necessary 
and sufficient to determine the original value a. The seed s can 
not be determined even if all results of all possible calls are 
available, and without the seed the values of any call give no 
clue about the values of a used in another call. 

merge-partials (p:set of partial-key)-+ a: filly-type 
Returns the original value of a which was divided into parts by 
form-partial . The parameter p must include at least as many 
partials formed from the original a as the threshold with which 
they were formed. 

compress(a:Blly-type)-+i:integer 
Returns a cryptographic compression of the argument into an 

now()-+time 

integer. Thus, given a and i = compress( a.) and the function 
compress, it is infeasible, under the assumptions of Chapter III, 
for an adversary to produce a.' such that i = compress(a') and 
a''¢ a. 

Returns the time maintained by the clock of the instant node. 

suicide (m:integer) . 
A real-time counter is set to count down for an mterval of m, 
and if the counter ever reaches 0, the instant vault sets all its 
secret V-functions to the value erased and in effect kills itself. 

ca.rdinality(s:set of Blly-type)-+integer 
Returns the number of distinct members of the sets. 

+, -, x-+integer These are the usual infix operations performed on integers. 
Also _ applied to two times is an integer.which is negative when 
the time on the right is before the time on the left. (See 

definition of time.) 
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-, u, n _.set of any-type 

The usual infix operators defined on sets, returning sets. 

<.~. , ~, >, ~-+boolean 
Comparison infix operators. 

E: , ~ , !: -+boolean 
Set membership, its negation, and subset. 

Simple Constants 

Besides the standard use of Arabic numerals as literal constants, there are 

two major sorts of constants used in the specification language. One kind of con

stant is used to indicate the various vacuous values, such as the empty set, un

initialized or don't-care values, and a special value indicating that all informa-

tion about any previous value of the function is lost. The second sort of constant 

is used to reference information certified into the vault initially which specifies 

the keys, number and quorum sizes of the two groups of trustees and the 

enforced delay intervals on their actions. The certification of constant values 

into vaults is covered in Chapter IX. 

Of course more elaborate versions of the algorithms presented here might 

include mechanisms to allow some or all of the constant values related to the 

trustees to be changed during operation of the network-much as the 

SET_MJNIMA D-function does in the present algorithms. But such flexibility 

may actually prove undesirable, since those supplying information to a system 

may not wish to do so if the ground rules for its security can be revised in an 

arbitrary way. 

A detailed definition of the simple constants follows: 
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empty 

undefined 
The empty set. 

No particular value. 

erased No trace or clue is left about the previous value of any v
function with this value. 

coo ling -off.Jj_nterv a1 

trustee -1-publics 

The minimum interval of time required between the time the 
last mem~er of a majority of present nodes sig·ns a proposal 
and the bme the first node signs the announcement of the 
action defined by that proposal. 

The set of public keys held by the trustees at level 1 which are 
used to check all signatures purported to be made by trustees 
at level 1. 

trustee -2-publics 
The set of public keys held by the trustees at level 2. 

trustee -1-quorum 
The number of trustees at level 1 whose signatures are 
sufficient to authorize anything that can be authorized by 
trustees at level 1. 

trustee -2-quorum 

trustee-l-ids 

trustee -2-ids 

The number of signatures of trustees at level 2 required to 
authorize any proposed action. Also the number of trustees at 
level 2 whose trustee partials are required by the replacing 
node in a restart. 

The set of node-ids which includes one member for each trustee 
at level 1. (As mentioned elsewhere, trustees are not nodes, 
but this convention greatly reduces the proliferation of types 
and typing mechanisms.) 

The set of node-ids which includes one element for each trustee 
at level 2. 

§3 Secret ¥-functions 

The ¥-functions which record information not publicly available are 

defined, their usc discussed, and initial values given. 

Variable functions, or V-functions, ar~ the variables which hold a vault's 

state. The Y-functions of a vault can be divided into those which the vault must 

keep secret and those which are public knowledge. This section presents the 

secret Y-functions; the next section presents the non-secret ¥-functions. 

The Y-function definitions presented here usually include three parts: (1) a 

heading which defines the name and type of the Y-function; (2) an initial value 
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part that includes the name and an express1·0 n wh 1 · th · ·t· 1 1 ose va ue 1s e m1 1a va ue; 

and (2) a comment part which discusses the intended use of the Y..function. 

The following productions give the basic idea of the syntax, further details 

being supplied in later sections: 

v-function ~name :simple-type :V-function initial-value comment 

initial-value -+ Initial: name = expression I derivation 

comment -+ Comment: wildcard 

Vaults must at minimum maintain the secrecy of their private keys upon 

which the security of the entire system relies. There will be two different kinds 

of secret keys, as mentioned in the previous chapter. Some keys need never be 

known outside the vault-these are the node secret keys . Other keys are kept 

secret by the vault, but they have been divided into partial keys and provided to 

other vaults for use during a restart-these are the application secret keys. In 

the following two subsections, each kind of secret Y..functions is considered 

separately. 

Node Secret Y-functions 

The V-functions described in this subsection never leave the vault. When 

the vault destroys its own information content, the values of these Y..functions 

are set to erased. 

This sub-section makes the first formal reference to the notion of sub

partial keys. These are just partials of partial keys. In other words, some thres

hold of sub-partial keys are sufficient to reconstruct the original partial key 

from which the sub-partials were originally formed. The algorithms in this 

chapter allow the trustees to decide how many, if any, sub-partial keys will be 
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used by the network. The reason for this is that while the use of sub-partials 

does provide somewhat more convenience and flexibility in the operation of the 

network, they also have non-trivial cost in terms of system resources (see 

Chapter VIII for analysis of resource requirements). Sub-partial keys allow a 

"quorum" of nodes to, among other things, cause any node not participating in 

the last key change to become "participated" and enter a state equivalent to 

that which would have been achieved had it participated in the key change, res-

tart nodes in an arbitrary order, and diminish the quorum size. The essence of 

this mechanism is that sufficient sub-partial keys allow every quorum of 

"present'' nodes to form a partial key for other nodes in the network. 

The following are definitions of the node secret l!-functions: 

NODE_PRIVATE :private-key: l!-function 

Initial value: NODE_PRIVATE = 
create-private (let !NITIALNODE_SEED =create-seed()) 

Comment: The private application key of the instant node. The initial value 
uses a l!-function which is local to the initialization process 
!NITJAL_NODE_SEED. 

NEW_NODE_PRIVATE :private-key: V-function 

Initial value: NEW_NODE_PRIVATE =undefined 
Comment: Returns the application private key which will be assumed by the 

instant node if it is a participant in a CHANGE_KEYS or subject of a PAR
TICIPATE before the next key change. This private key is created by 
CREATE-KEYS and corresponds with NEW_NODE-PUBLJC. 

PARTIAL_SEED :seed; l!-function 

Initial value: PARTIAL-SEED= undefined 
Comment: Returns the randomly create·d seed used to form p~rtial keys. 

Created and changed by CREATE_KEYS, PARTIAL-SEED ts used by 
ISSUE_NEW_PARTIALS and also by the subject node of PARTICIPATE. 
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PARTIAL-KEYS:table[node-id] of partial-key: V-function 

Initial value: \::fp PARTIALKEYS[p] =undefined 

Comrr:ent: The partial key held by the instant node for the participated node 
P 1s PARTIAL_KEYS[p]. The constituent partial keys are received by 
RECEIVE_NEW_PARTIALS and by RECEIVE_NEW_PARTICJPANT. 

NEW_PART!AL_KEYS :table[node-id] of partial-key: V-function 

Initial value: \::fn NEW_PARTIAL_KEYS[n] =undefined 

Comment: Returns the new partial key held by the instant node for the 
selected node. The value is obtained by RECEIVE_NEW_PARTIALS and 
will replace PARTIALKEYS iff the instant node participates in a 
CHANGE_KEYS before the next CREATE_KEYS. 

SUB -PART/ALS:table[node-id][integer] of partial-key: V-function 

Initial value: \::fp \::7'i SUB-PARTIALS[p][i] =undefined 

Comment: The partial partial key held b;r the instant node for the partici
pated node n, to be released to the node assuming the ith set of sub
partials. The values are obtained from NEW_SUB-PARTIALS after the 
instant node participates in a CHANGE_KEYS. or from the input supplied 
to NEW_PARTICIPANLRECEJVE. The SUB-PARTIALS[p][i]s held by a 
quorum of present nodes for a particular set of sub-partials indexed by i 
are sufficient to allow merge-partials to determine a partial for node p. 

NEW_SUB-PART/ALS:table[nodc-id][integer] of partial-key: V-function 

Initial value: "dn "di NEW_SUB-PARTIALS[n][i] =undefined 

Comment: Returns values accumulated since the last CREATE-KEYS which 
will replace SUB -PARTIALS iff the instant node participates in a 
CHANGE-KEYS before another CREATE_KEYS. 

OWN_ TRUSTEE_PARTJALS:table[node-id] of partial-key: Y:.function 

Initial value: "v'n OWN_ TRUSTEE_PART!ALS[n] =undefined 

Comment: OWN_TRUSTEE_PART!ALS[n] is a private key which must be 
present in the instant node when the instant node is the replacing node in 
a RESTART in which node n is the replaced node. Values of 
OWN_ TRUSTEE-PARTIALS are obtained by the subject of CERTIFY for_ all 
the nodes it is certified for for (except itself), and any values for whlCh 
the subject is not certified are erased. In an app~ication where some 
different nodes have access to different data, a particular vault may not 
be approved to restart some nodes. 
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Application Secret V-functions 

Care is taken to ensure that APPLICATION_PRIVATE can be recovered only 

with partial keys of the most-recently completed key change, and that 

NEW_APPLICATION_PRIVATE can be recovered with partial keys distributed for 

the next key change . Of course there is presumably much secret application 

data which must be included in checkpoints, and it should also be divided into 

current change period and new period -so that obsolete application data 

becomes inaccessible once a node changes keys. The aggregate l'-function, 

APPLICATION_SECRET_ V-FUNCTIONS, is assumed to contain all application 

secret data from the current change period; the aggregate 

NEW_APPLICATION_SECRET_ V-FUNCTIONS contains all application data 

for the forthcoming key period. 

The following are definitions of the two application l'-functions relevant 

here, one for each aggregate: 

APPLICATION_PRIVATE:private-key: V-function 

Initial value: APPLICATION_PRIVATE = create-private(create-seed()) 

Comment: The private application key of the instant node. 

NEW_APPLICATION_PRIVATE:private-key: l'-function 

Initial value: NEW_APPLICATION_PRIVATE =undefined 
Comment: Returns the application private key which will b.e assumed by the 

instant node if it is a participant in a RESTART or subJect .of a PARTICI
PATE before the next CHANGE-KEYS. This private key 1s created by 
CREATE-KEYS and corresponds with NEW_NODE-PUBLIC. 
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§4 Non-Secret V-functions 

Those ¥-functions are pres t d hi h en e w c relate to node state that is 

not secret. 

Some 11-functions in this section are defined in term f · · 1 s o expresswns mvo v-

ing other Y-functions, and they have a "derivation" part instead of an initial 

value part: 

derivation ~ Derivation: name = expression 

The OWN_NODE Y-function is special in that its value never changes during 

the life of a node, but the actual initial value of each node's OWN_NODE must be 

unique. No initial value part or derivation is used for OWN_NODE. 

As will be seen in Chapter VII, it is quite useful to distinguish those v-

functions whose values must be in agreement across nodes, from those v-

functions which are not subject to any consensus constraint. These two kinds of 

V-functions are covered in separate subsections. 

Consensus Y-Junctions 

The non-secret V-functions presented in this subsection are intended to 

have identical value for all nodes with the same value of CYCLE (which is defined 

in the next subsection). They define the status of the network. As a notational 

convenience, the consensus Y:.functions are denoted collectively as 

CONSENSUS_ V-FUNCTIONS. 



NODES-IN_ USE:set of node-id; l'-function 

Initial value: NODES_IN_ USE= empty 

Comment: Returns the set of node ids which includes an id for every node in 
the network_. . ~hese exclude all removed nodes and include the newly 
CERTIFYed m1bate nodes which have not ever been members of PARTICI
PATED. and all veteran nodes which are those nodes who have been 
members of PARTICIPATED at least once, whether or not they are 
presently participated. 

USED_NODE_IDS:set of node-id; V-function 

Initial value: USED_NODE_IDS =trustee-l-ids u trustee-E-1-ds 

Comment: Returns a set of node ids which are not suitable for use by any new 
node. CERTIFY ensures that new nodes do not use ids in 
USED_NODE_IDS, REMOVE_NODES places the id of all removed nodes 
into USED_NODE_IDS, and RESTART places the id of the replaced node 
in USED_NODE_IDS. For simplicity in typing and signature checking 
primitives, as already mentioned, node-ids are also used to identify the 
trustees. 

PARTICIPATED:set of node-id: l'-function 

Initial value: PARTICIPATED= empty 

Comment: Returns the set of node ids which includes exactly those nodes 
which were included as PARTICIPANTS in the last CHANGE-KEYS and all 
those nodes which have been the subject of subsequent PARTICIPATEs. 
Any node which is to become present must be a member of PARTICI
PATED. 

PRESENT:set of node-id: V-function 

Initial value: PRESENT = empty 

Comment: Returns the set of node ids which defines the most privileged and 
ca able subset of nodes. Every QUORUM of members of PRESENT _have 
su~icient partial keys to enable them to restart any prese_nt node. Signa
tures of a QUORUM of members of PRESJ!!NT are requ1red before any 
node may perform any synchronized D-funcllon. 

ABSENT:set of node-id: Y-function 

Derivation: ABSENT= NODES-IN-USE- PRESENT 

APPLIED:set of node-id: Y-function 

Initial value: APPLIED= empty d h" h currently have an 
t f de ids of all no es w lC 

Comment: Returns the se 0 no . h they are the subject of an APPLY 
application. Nodes enter apph~d wn~~e in a RESTART and they leave 
or when they are the replacl~g t f REMOVE_NODES or the replaced 
APPLIED when they are a subJeC o 
node of a RESTART. 
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MAJORITY:integer: v-function 

Initial value: MAJORITY= 0 

Comment: The minimum number of . . 
announcement or action can be . ~lgnatones required before any 
Must be at least as great carne out. Set by CHANGE_PRESENT. 
cardinality(PARTICIPATED) and as t· ~UORUM and no greater than 
ment. ' sa lS Y the MINIMUM_MARGIN require-

MARGIN :integer: v-func tion 

Derivation: MARGIN= (2x MAJO'RITY) d ' l'ty( . . . . - car tna t PRESENT) 
Comment. The m1rumum mtersection b t 

PRESENT nodes. e ween any two MAJORITYs of 

MINIMUM_MARGIN:integer: V-function 

Initial value: MINIMUM-MARGIN= 1 

Comment: The small~st allowable value of MARGIN. The value of 
MINIMUM-M_ARGIN 1s changed only by SET-MINIMA , and can not be set 
belo': 1,. Wh1Ch ensures that MAJORITY is always a simple majority of 
card'Lnal'Lty(PRESENT). 

MINIMUM_QUORUM :integer: l'-function 

Initial value: MINIMUM_QUORUM = 0 

Comment: The smallest allowable value of QUORUM. Set by SET_MINIMA. 

QUORUM:integer: v-function 

Derivation: QUORUM = QUORUMS[LAST_CHANGE] 

Comment: The current quorum. 

QUORUMS:table[integer] of integer: l'-function 

Initial value: QUORUMS[O] = 01\ 
V'n~ if n ~ 1 then QUORUMS[n] = undefinedl 

Comment: Returns the number of partial keys required for a restart of a 
f?.Ode who last participated during key change n, for all 
n~ LAST_CHANGE. Thus, QUORUMS[LASLCHANGE] returns the 
number of partials of the current key change period which are required 
by merge-partials. And QUORUMS[LAST_CHANGE + 1], returns the 
number of nodes whose partials or sub-partials will be required for a suc
cessful merge-partials during the next key change period, if no further 
CREATE-KEYS occurs before the next CHANGE-KEYS. 

-
53 

' I 



SUB-PARTIALS_REMAINING:table[node-id] f · t . 
. . 0 m eger: V-funcbon 

Imtlal value: 'dn SUB-PARTIALS_REMAIN!NG[ J _ 
n -undefined 

Comment: Returns the number of sub- artials .. 
New entries are established by CERTjFY. remammg for the nth node. 

NEW_SUB-PARTIALS_RE1J.AINING:table[node-1·d] f · t u . 
0 m eger: r-funcbon 

Initial value: 'dn NEW_SUB-PARTIALS REMAINING[ ] - n = undefined 
Comment: Returns the number of sub-partials that 

node during the current k h . are needed by the nth 
CREATE_KEYS. ey c ange penod as established in the last 

LAST-CHANGES:table[node-id] of integer: V-function 

Initial value: 'dn LAST_CHANGES[n] =undefined 

Comm_ent: LAST_CHA(V~ES[nJ. retur?~ the last key change period during 
wh1ch node n parhc1pated m the 1mtial CHANGE_KEYS or in which n was 
the subject of a PARTICIPATE. New entries are established by CERTIFY. 

LAST_CHANGE:integer: V-function 

Derivation: LAST_CHANGE = LAST_CHANGES[i] 
t'd J ~LAST_CHANGES[i] ~ LASLCHANGESIJ]n 

Comment: Returns the number of the last key change the instant node has 
processed, whether or not the instant node participated. 

KEY_ GREAT I ON-# :integer: l'-func lion 

Initial value: KEY_CREATION_# = 0 

Comment: Returns the serial number of action calls of the CREATE_KEYS ~ 
function. Notice that there may be more than one call to CREATE_KEYS 
between calls to CHANGE_KEYS and that all but the last such call have no 
effect on the CHANGE-KEYS because PARTIALS-RECEIVED is emptied by 
CREATE-KEYS and all relevant transfers include the KELCREATION_fl. 
(The multiple calls may be convenient since they allow a new quorum and 
complement of sub-partials to be selected.) 

SUICIDE_INTERVAL:integcr: l'-function 

Initial value: SUICIDE-INTERVAL= cooling-off-interval 
Comment: Returns a time interval (i.e. an integer) during which a node must 

become participated or it will commit suicide. The actual ~all to. suicide 
is made on the SUICIDE-INTERVAL minus the amour:t of tu:ne smce the 
earliest timestamp among the majority of s1gnator~es to . the 
CHANGE-KEYS or PARTICIPATE in which the instant node 1s a subJect. 

Th · ·t· 1 1 · uch that a SET MINIMA must occur before a e 1n1 1a va ue lS s - . . 
cooling-off-interval has elapsed since the first CHANGE_KEYS partici-

pated in. 
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NODE-PUBLICS:table[node-id] of public-k V-f . 
ey: - unchon 

Initial value: "v'n NODE_PUBLIC'S[n] _ d fi - un e ned 
Comment: The current application publi k f . 

. c ey o every node muse. 

APPLICATION_PUBLICS:table[node-id] of public-key: Y..function 

Initial value: "v'n APPLICATION_PUBLJCS[n] =undefined 
Comment: The current node public k f · 

established by CERTIFY d . e( 0 eve~y node muse. New entries are 
CHANGE-KEYS and PART;;IP~;~. mg entnes are changed for subjects of 

CERTIFICATION:table[node-id] of set of node-id V-function 

Initial value: "v'n CERTIFICATION[n] =undefined 1\ 
CERTIFICATION[OWN_NODE] =empty 

Comment: Each node in use n has associated with it a set of other nodes 
CERTIFICATION[n] whose applications it is allowed to assume, either by 
APPLY or RESTART. The nodes comprising the certification of a node are 
initialized and changed by CERTIFY. 

PROPOSALS_PENDING:set of integer: V-function 

Initial value: PROPOSALS_PENDING =empty 

Comment: Returns the set of all cycle numbers of proposals which have been 
proposed but not canceled or carried out. 

COM PRES SED_H IS TOR Y:integer: Y..fun ction 

Initial value: COMPRESSED-HISTORY= 0 

Comment: Returns a compression of CONSENSUS_ V-FUNCTIONS formed 
before the action of the last cycle was completed. Since 
COA!PRESSED_HISTORY is included in CONSENSUS_ V-FUNCTIONS, 
COMPRESSED-HISTORY is a l'-function of the entire series of states 
obtained by the identical V-functions during all previous cycles. Because 
COMPRESSED_HISTORY is checked in the input of every synchronized 
D-function, no node will perform any synchronized action unless its entire 
history of CONSENSUS_ V-FUNCTIONS states is the same as every 
other node performing the action. This is largely a redundant mechan
ism; see Chapter VII. 

Individual ¥-functions 

Some of the non-secret l'-functions presented in this subsection will have 

· · th ode For example, a node's record umque values, never obtamable by ano er n · 

· · · Other V-functions covered here may of its own past public keys will be umque. 
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have nearly the same values across nodes, b t th· 
u lS strict consensus is not 

enforced in the as previous subsection. For example, 

PARTIALS-RECEIVED-FROM contains node ids of all the nodes from which a 

node has received partial keys. These may vary as the p t· l k · d 
ar 1a eys are rece1ve 

in different orders and possibly from different sets of nodes, but those main-

tained by all participated nodes will ultimately include node ids from all partici

pated nodes. Just as CONSENSUS_ V-FUNCTIONS was used to denote the 

entire collection of consensus V-functions, INDIVIDUAL_ V-FUNCTIONS will be 

used to denote the collection of individual V-functions . 

OWN_NODE:node-icl l'-function 

Comment: Returns the node-id which identifies the instant node for its entire 
life. The value should be distinct from that of all other nodes, so that 
CERTIFY will allow the node to be initiated into the network. Examples of 
possible actual implementation values include the simple serial numbers 
of a node or the initial node public key. 

PHASE :1 .. 2: V-function 

Initial value : PHASE = 1 

Comment: Returns the current phase, either 1 or 2, which is used by all syn
chronized a-functions. When PHASE= 1 a node will add its signature to 
any announcement or action which has insufficient signatures and does 
not raise an exception, then the node will change to PHASE = 2. When 
PHASE= 2 a node will not add its signature to any a~nounc~~ent. _In 
either phase, when a node recei:es a~ an_nouncement w1lh sutilCtent _slg
natures and no exception is ra1sed, 1l Wlll perform the effects secllon, 
which includes setting PHASE= 1 and incrementing CYCLE. 

CYCLE:integer: l'-function 

Initial value: CYCLE = 1 
Comment: The basis of all synchronization of the_ network, this monot~nically 

· · 1 that all nodes w11l process synchromzed o-
1rncret~smg_ va ue telnstuhreessame order Returns the serial number of the 
unc 1ons m exac Y · d h t t f rm 

next announcement or action which the present no e as ye o per o . 
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NEW-NODE-PUBLIC:public-key: Y-function 

Initial value: NEW_NODE_PUBLIC: =undefined 

Comment: Returns the instant node' 
corresponds with NEW_NODE_PRIV;T;wn ~ew node public key, which 
during the last CREATE-KEYS. ' an whose value was determined 

NEW-APPLICATION_PUBLIC:public-key: V-function 

Initial value: NEW_APPLICATION_PUBLIC: =undefined 

Comment: Returns the instant node's own new r t' 
corresponds with NEW APPL!C'AT app tea lDn public key, which 

• - r1 ION_PRIVATE and whose val 
determmed during the last CREATE_KEYS. ' ue was 

ALL-OWN_NODE_PUBLICS :set of public-key: V-function 

Initial value: create -public (INITIALNODE_EEED) e: 
ALL_OWN_NODE_PUBLJCS 

Cor:r:ment: Returns _all the node pu.blic keys that have been used by the 
mstant node to s1gn proposals whtch are pending. Because the number of 
proposals pending can be kept from growing too large, through the use of 
CANCEL_PROJ!OSAL, cardinality(ALL_OWN_NODE_PUBLJCS) can be kept 
to a modest s1ze. /NITJAL_NODE_SEED is a variable which is local to the ini
tialization and which is defined in the description of NODE_PRJVATE. 

PARTIALS_RECEIVED_FROM :set of node-id: V-function 

Initial value: PARTIALS_RECE!VED_FROM =empty 

Comment: Returns the set of nodes for which the instant node has received 
partial keys during the current key creation period. This V-funclion is 
emptied by CREATE-KEYS, and new members are added to it by 
RECEJVE_NEW_PARTIALS. NEW_PARTIC!PANT_RECEJVE and 
RECEIVE_NEW_PARTICIPANT. The unsynchronized D-function 
PARTIALS-RECEIVED issues signed statements of minimum content of 
PARTIALS_RECEIVED_FROM. These statements must be received from 
all nodes who participate in a CHANGE-KEYS, and they must include 
every such participating node. The statements are also checked for by 
CHANGE-PRESENT to ensure that all nodes made present have partial 
keys from all other nodes made present, which ensures that all necessary 
RECEIVE_NEW_PARTIC!PANT and NEW_PART!CIPANLRECEJVEs have 
completed for any PARTICIPATEed nodes. 

§5 Templates, Template Types, & Primitives 

Input and output parameter passing mechanisms are described 

which include constructed descriptions of hierarchically encrypted 

data, and primitives for performing cryptographic operations on 

data. 



An unusually powerful param t . 
e er mechamsm has been incorporated into 

the specification language used he f re, or several reasons. First, it allows the 

underlying structure of multiply encrypted messages to be shown clearly. 

Second, it allows much of the routine h k' c ec mg and cryptographic transforma-

tions to be handled cleanly, and without c r t' . omp lca mg the rest of' the algorithm 

description unnecessarily. Third th ' e particular form used here can also provide 

descriptive names, types, and sometimes v 1 f th a ues or e parts of parameters. 

Templates 

The basic syntax for the parameter description mechanism, called a tem

plate, is shown in the following productions: 

template --+name :construction 

construction ~ *constructor-type <item-list> I 
constructor-type <item-list> 

constructor-type ~ signed I sealed I signatured 

item --+ expression =name :type I name :type I 
expression = :type I name : I :type 

item-list --+ item-list, item I item 

type --+ simple-type I construction 

The constructor types are covered in the next subsection. A * denotes a 

part of a template, or an entire template, that is optional. The rules for when 

the optional parts must appear in input, and when they are output are covered 

in the subsection on template primitives . . the names which may appear in a 

template serve as the formal parameters. An item in a template may include an 

expression. When an expression provides a value for an item in a template 

describing input, the actual parameter supplied must have the identical value; 

when an expression provides a value for an item in a template describing output, 

the value provided is output. 



Notice that all five non-empty possible combinations of the three com-

ponents of an item can be used in a template One form of 't · t 
· t em 1s name : ype. 

It is the usual formal parameter when used for input, and is used to return the 

value of the formal parameter (which must be of the specified type) in an output 

template. Another form of item is expression = :type , which is used in an 

input template to cause an initial "bad template" exception if the correspond

ing input actual parameter does not have the value of the expression. It is used 

in an output template to return a value for which a parameter name is not 

needed. The most elaborate form is expression =name :type. It serves the 

same function as the previous form, except that a parameter name is associated 

with the value. When only a name is supplied, name :, the type and value are 

obtained from another item with the same name. When only a type is supplied, 

;type, the value of the parameter is ignored. 

Several items or even whole templates in an G-function may share the same 

name. Items with the same name must have the same value . Templates with 

the same name are just different copies of the same template. The next section 

contains a number of templates which may serve as instructive examples. 

Tern plate Types 

The three template types were shown in the formalism of the previous sub-

t . t t ....J..rn, Th'1s subsection gives a detailed description of sec 1on as cons rue OT-·:~r~ · 

k t th r with those of the template each, but these descriptions are best ta en oge e 

primitives of the following subsection. 



signed 

signatured 

sealed 

A digital signature of a struct . 
the primitives sign and ch kur~ of conshtuent elements. (See 

. ' ec -SLgnature .) 
A collechon of digital signatures of . 
are several possible im 1 . the same matenal. There 
tured such as repeated ~::ent.ahons of. the n.otion of signa
dually signed seperate c . ryp:l~n of a smgle b1t string, indivi
made on a compression ~f~~ 0 ~~ satme bit. string, signatures 
nation of these a e rna er 0 be s1gne9., or a combi
citly include in ::ro~ches . It may also be desirable to expli-

d h . e stgnatured some bits indicating who has 
rna e eac s1gnature (See th . . . 
check si n ) · e pnm1llves sign and 
provideJ a~~edth A sig~ature~ may also include timestamps 

. e s1gnatones. (See the primitives 
latest-stgnature and earliest-signature.) 

~ encrypted ~orm of the constituent elements of a structure. 
hese should mclude a random component, as described in 

Chapter II. (See the primitives seal and unseal) 

Template Primitives 

The following primitive functions are used to perform cryptographic 

transformations on input and output of D-functions. Input parameters which are 

included in a signatured, signed or sealed construction must be lhc subject of a 

check-signatured, check-signature or unseal primitive respectively if the con-

stituent items of the construction are to be accessed. Once the primitive is 

applied, free use can be made of the items of the construction. The omission of 

optional input constructions in an "actual parameter" (those marked by a * in 

the "formal parameter") which are the subject of check-signatured or 

check-signature cause these primitives to return false. Optional output con-

structions are output if and only if their signed construction is the subject of a 

sign primitive. Any signatured constructions appearing as input will be output 

with an additional signature if they are the subject of a sign primative -even 

though the construction name does not appear in an output section. 

The following identity provides an example of some of the template primi

tive functions. It simply asserts that sealing and signing are inverses when keys 

created from the same seed are used. 
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if s =create-seed() then 

m=unseal (seal (m, create-public (s)), create-private (s)) 

The following are definitions of the templat · ·t· e pr1m1 1ves: 

sign(signed<a:any-type, · · · >. k:private-key) ... 
Optio.nal outp~t parameters are output iff their signed struc

. ture 1s the subject of a sign primitive. 

seal(sealed<a:any-type, · · · >. k:public-key) ... 
Must be applied ~o any_ output structure that is of type sealed if 
that s~ructure Will be mcluded in D-function output. The public 
key k 1s used to perform the encryption. 

unseal(sealed<a:any-type, 0 
• • ), k :private-key) ... 

Makes accessible {but does not actually return) the unsealed, 
i.e. un-encrypted, form of the input structure s iff s was the 
output of an D-function which resulted from a seal primitive 
applied with the public key corresponding to the private key k. 

check-signature {s:signed<a:ny-type · o 
0 
), k :public-key) ... boolean 

Checks the digital signature of the subject input structure s by 
decrypting it with the public key k and checking for the redun
dancy required by convention, and returns true iff the signa
ture passes the test. 

check-signatured(s:signatured<any-type · · · >. k:set of public-key, m :integer) ... 
boolean 
Returns true iff a set of digital signatures of the subject input 
structure s can be checked as having been formed by holders 
of m private keys corresponding to m of the public keys con
tained in the set of keys k (i.e . 3p:set of public-key 
~cardinality (p) = m 1\ p C k 1\ \7'n:public-key ~ if n E:. p then 
check-signature (s, n)ll 

latest-signature (s:signatured<any-type · · · >) .... time . . . 
Returns the most recent timestamp contamed m the s1gnatures 

of s. 

earliest-signature (s:signatured<a:ny-type · ·· >)--time . 
Same as latest-signature except the time of the earliest. 
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§6 Synchronized D-functions 

Presents the remainder of the sp ifi t· ec ca 1on language and uses it to 

define the major D-functions of the proposed design. 

The D-functions presented in this section define all the ·synchronized 

actions performed by the network. These allow for consensus by the nodes on 

the state of the network, and implement all the change · t k t t F" s m ne wor s a us. lg-

ure 1 shows the D-functions which change the status of individual nodes, such as 

by certifying them into the network, removing nodes from the network, and res

tarting a disabled node. The CHANGE_KEYS D-function of the figure allows a set 

of nodes to each change their public keys and receive new partial keys from the 

other nodes, once the new partials have been sealed with the receiving node's 

new keys. One other G-function, not shown in the figure, has an impact on the 

network status. It establishes the minimum values of important system parame-

ters. 

Properties of the synchronization mechanism are demonstrated in Chapter 

VII. For the present purposes, it is important to notice that synchronization is 

provided by a cycle counter, CYCLE, maintained by each node. Each node can 

perform the action of only one synchronized Q-function call for each successive 

cycle. A majority of present nodes must each sign a template which defines 

every synchronized D-function call and the numbered cycle during which it is to 

be performed. No node signs more than one template during a single cycle. 

This arrangement ensures that nodes perform exactly the same D-function call 

during each cycle number. In particular, the CONSENSUS_ V-FUNCTJONS of 

all nodes in a particular cycle are guarantee to be identical. 

Chapter II gave a description of three levels of trustees: trustees at level 1 

are not in a position to compromise system security, but are able to perform 

· t the system's reliability; trustees 
the day to day operations necessary o ensure 
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at level 2 establish policy and make security r 1 t d .. 
e evan ec1s10ns; trustees at level 

3 are not part of the mechanism of this chapter b t . . 
• u are constdered m Chapter 

VII as mentioned above. The present section is di 'd d · • Vl e mto those D-functions 

callable by trustees at level 1, and those callable by t t t 1 rus ees a evel 2. Before 

any trustee level 2 D-function call can be m d h · a e, owever, tt must be proposed: 

the definition of the security relevant parts of the call must be included in a 

trustee level 1 call to PROPOSE, which takes up one cycle. After this call has 

been made, a delay of length cooling-off-interual is enforced before the trustee 

level 2 action can be performed, by the corresponding trustee level 2 call. Any 

other actions may occur during intermediate cycles, and the trustee 2 level call 

can be blocked from ever occurring by the CANCEL-PROPOSAL synchronized a

function. The following two subsections provide the details of each of these two 

kinds of synchronized D-functions. Before the D-functions can be presented, 

however, the remainder of the specification language must be described. 

0-function Syntax and Semantics . D-functions are composed of five 

major parts, roughly following the the structure put forward by Parnas [72). For 

the purposes of the present work, the simple input parameter list of the Parnas 

notation has been extended into optional input and output parts, which use the 

template mechanism described in the previous section. The third part of an a

function is merely for documentation. The fourth part lists a series of named 

exception conditions, all of which are checked sequentially. If all the checks are 

successful, then the effects part (the fifth part) is performed. 

Some of the statements which make up the effects part are boolean expres

sions. They have the effect of changing their constituent V-functions or formal 

· t ue Other statements do not 
parameters to values which make the expresston r · 

f · T functions with side effects. 
return values, but rather are composed o prtml lVe 

t' All values of V-functions 
There . is no implied sequential order of execu lon. 

h 1 f the v-function after the entire a-
within the effects part represent t e va ue 0 
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L 

function is completed. Those Y-functions h w ose names a 1 . . re enc osed m smgle 

quotes represent the value of the V-function before the 
call to the D-function. 

The foliowing productions give the syntax of D-f t· .. unc lon defimbons and their five 

parts: 

0-function -+header input output comme t t' 
h d 

. n excep tons effects 
ea . er 'Lnput comment exceptions effects I 

header output comment exceptions effects 

header -+name :0-function 

input -+ Input: template 

output -+ Output: template 

comment -+Comment: wildcard 

exceptions -+ Exceptions: exception-list 

exception-list -+ exception-list ,exception I exception 

exception -+ name : boolean-expression 

effects -+ Effects: statement 

statement -+ boolean-expression I ~statement-list J I 
if boolean-expression then statement I 
if boolean-ex]Jression then statement else statement 

with name [expression ]statement 

statement-list -+ statement-list , statement I statement 

boolean-expression -+ ~boolean-expression I 
(boolean-expression) I 
boolean-primitive-function(expressio'Tirlist) I 
expression predicate expression I 
if boolean-expression then boolean-expression I 
if boolean-expression then boalea'Tirexpression 
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else boolean-expression 
qua.ntifier nrune :elementary·type ~boolean-expression J I 
quantifier name :elementary-type 
quantifier nctme :elementan.rtype ~boolean-expression J 

expression -+ name I 'name •I expression operator expession I 
(expression) I name [expression] I 
name [expressian][expression] I 
let name = expression I 
with name [expression]expression I 
prim itiv e-Junc tion ( expre s sian-list) 

expressio'Tirlist -+ expressio'Tirlist, expression I expression 

· h t ary variables within a-
The keyword "let" is used to establis empor 

functions to avoid re-writing long expressions. The keyword "with" is used, 



much as in some programming languages to extend the l'fi t· • qua 1 ca wn of a name 

(in this case, a part of a construction selected by a part'tc 1 · d ) u ar 1n ex over an 

expression. 

Trustee 2 D-functions 

There are three trustee level 2 D-functions. The CERTIFY function is used 

to bring new nodes into the network, as can be seen in Figure 1. This function is 

critical to the security of the entire system because if sufficient corrupted or 

even subverted nodes (see Chapter III) are brought into the network, then many 

of the security measures are useless. It can also be used to establish and 

modify a set, for each non-applied node, of nodes that the node can replace dur

ing a restart. (This might be used in an application where some nodes have data 

so sensitive that some vaults should never be able to access it.) 

The SET_MJNIMA function is also very important. It establishes the 

minimum margin (the significance of which is discussed in Chapter Vll), the 

minimum quorum of present nodes required for system operation, and the 

amount of time a node will wait to participate before it erases its own secret. v-

function values. All three of these parameters determine the difficulty of the 

various attacks which could be perpetrated against the system. 

The final level 2 function is REMOVE_NODES. It simply allows nodes to be 

taken out of the network, as illustrated in Figure 1. 

One thing to notice about these func~ion definitions is that some of the 

latter exceptions and initial effects are the same. These common mechanisms 

are used to establish synchronization. When one of these functions is called and 

the ANNOUNCEMENT template does not have signatures from a majority of present 

nodes _(and the present node has not added its signature to an announcement of 

the current cycle), then the node simply adds its signature to the announce-



ment and returns; when one such function is call d d th . . . 
e an ere are suff1c1ent stg-

natures on the announcement, the node changes to phase 
1 of the next cycle 

and performs the required action. Thus t f • o per orm a particular synchronized 

action as a particular cycle, at least a majority of present nodes in phase 1 of 

that cycle must first be called to obtain sufficient signatures on the desired 

announcement, and then this announcement can be used in subsequent calls to 

cause any node to perform the synchronized action. 

The following are the detailed function definitions: 

CERTIFY: G-function 

Input: 

ANNOUNCEMENT:signatured 

<NODE_CERTIFIED :node-id 

NODE_KEY: public-key, 

APPLICATION_KEY:public-key, 

NODES_RESTARTABLE:set of node-id, 

TRUSTEES_SUPPLYING :set of node-id 

TRUSTEES _PART/ALS :table[node-id] of 
TR USTEE_PARTIALS : scaled 
<:table[node-id] of partial-key>, 

PROPOSAL-CYCLE-# :integer, 

CYCLE = CYCLE-# :integer, 

COMPRESSED_HJSTORY = :integer, 

certify= :announcement-kind>, 

PROPOSAL: signatured 

<NODE_CERTIFIED:node-id 

NODE_KEY: public-key, 

APPL/CAT/ON_KEY:public-key, 

NODES_RESTARTABLE:set of node-id 

LATEST _T/MESTAMP:time, 

PROPOSAL-CYCLE-# :integer, 

propose-certify= :proposal-kind> 
Comment: The set of nodes the NODE_CERTIFIED is allowed to restart is 

changed to NODES_RESTARTABLE. If the NODE-CERTIFIED node id is not in 
NODES_/N_ USE. then it becomes included in NODES_JN_ USE. and the 
NODE-KEY and APPL/CAT/ON_KEY parameters input are used to establish 
table entries corresponding to the new node. All nodes change the set of 
nodes the NODE_CERTIFIED is allowed to restart to NODES_RESTARTABLE. If a 
node's own id appears in its NODES_RESTARTABLE then it is allowed to be 
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APPLYed. The NODE-CERTIFIED recovers the OWN_TRUSTEE PARTIALS 
that are needed by merging the TRUSTEE-PARTIALS input by a 
trustee-8-quorum. The OWN_TRUSTEE_PARTIALS that are no longer 
needed are erased. 

Exceptions: 

BAD-NODE-CERTIFIED : NODE-CERTIFIED E: USED_NODE-IDS 

PROPOSAL_NOT-PENDING : PROPOSALCYCLE_fl ~ PROPOSALS-PENDING 

INS UFFICIENLTR USTEE-2-SIGNATURES : ~ che ck-signrzture d 
(ANNOUNCEMENT-DEFINITION, trustee-2-publics, trustee-2-quorum) 

INSTANT-ALREADLSIGNED-ANNOUNCEMENT : PHASE= 2/\ 
~(let SIGNATURES_OF_MAJORITY_OF_PRESENTS = 

check-signrztured(ANNOUNCEMENT, ~V'n : node-id 
~ ifn E: PRESENT then NODE_PUBLICS[n]jj. MAJORITY)) 

INSTANT_NOT_SIGNATORY: ~ 3 K:public-key ~k E: ALLOWN_NODE_PUBLICS /\ 
check-signrzture (PROPOSAL, k)j 

TOO_EARLY: now -LATEST-TIMESTAMP< cooling-ojf-intervrzl 

Effects: 

if ~SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
fsign(ANNOUNCEMENT, NODE-PRIVATE), PHASE= 2j 

else~ 

PROPOSAL-CYCLE-# ~ PROPOSALS_PENDING, 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENS US_ V-FUNCTJONS '), 

CERTIFICATION[NODE_CERTIFIED] = NODES_RESTARTABLE, 

if NODE-CERTIFIED~ 'NODES_IN_USE' then 

fNODE_CERTIFIED E: NODES_/N_ USE, 

APPLICATION_PUBLICS[NODE_CERTIFIED] =APPLICATION _KEY, 

NODE_PUBLICS[NODE_CERTIFIED] =NODE-KEY, 

LAST_ CHANGES[NODE-CERTIFIED] = 0, 

SUB -PARTIALS_REMAINING[NODE_CERTIFIED] = Oj, 

if NODE-CERTIFIED= OWN_NODE then 

~V'k:node-idf if k E: TRUSTEES-SUPPLYING then 

unseal(TRUSTEES'_PARTIALS[k] , NODE_PRIVATE)j, 

V'r:node-id ~ if r E: NODES_RESTARTABLE /\ 
r ~ 'CERTIFICATION'[OWN_NODE] then 

OWN_TRUSTEE_PARTIALS[r] = merge-przrtials( 
fV'k :node-id~ if k E: TRUSTEES-SUPPLYING then 

with TRUSTEES'-PARTIALS[k] 
fTRUSTEE_PARTIALS[r Jlll ), 

\:tn:node-id ~if n E: 'CERTIFICATION'[OWN_NODE] /\ 
n t NODES-RESTARTABLE then 

OWN_TRUSTEE-PARTIALS[n] = errzsedlB 
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sET-MINIMA: D-function 

Input: 

ANNOUNCEMENT: signatured 

<NEW_M/NIMUM_QUORUM :integer, 

NEW_M/N/MUM_MARGIN:integer, 

NEW _s U/ C/DE_/NTERVAL :integer, 

PROPOSAL-CYCLE-# :integer, 

CYCLE = CYCLE_# :integer, 

COMPRESSED-HISTORY= :integer, 
set-minima= :announcement-kind>, 

PROPOSAL :signatured 

<NEW_M/NIMUM_QUORUM :integer, 

NEW_M/NIMUM_MARG/N:integer, 

NEW _s U/C/DE_/NTERVAL :integer, 

LATEST_T/MESTAMP :time, 

PROPOSAL-CYCLE-# :integer, 
propose-set-minima= :proposal-kind> 

Comment: The V-functions holding the minimum values are changed to the 
values of the corresponding parameters. The new minima must not be 
larger than a possible current actual as opposed to minimum value. 

Exceptions: 

NEW_M/N!MUM_MARG/N_TOO_SMALL : NEW_M/N/MUM_MARGIN < 1 

NEW_M/NIMUM_MARG/N_TOO_B/G ; NEW_M/N/MUM_MARG/N >MARGIN 

NEW_M/NIMUM_QUORUM_TOO_B/G : NEfLMINIMUM_QUORUM > QUORUM 

PROPOSALNOT_PENDING: PROPOSAL-CYCLE_# t PROPOSALS-PENDING 

INSUFF/C/ENT_TRUSTEE_'LS/GNATURES: ~check-signatured 
(ANNOUNCEMENT-DEFINITION, trustee-2-publics, trustee-2-quorum) 

/NSTANLALREADLS/GNED-ANNOUNCEMENT: PHASE= 21\ 
~(let S/GNATURES_OF_MAJOR/TLOF_PRESENTS = 

check-signatured(ANNOUNCEMENT, ~Vn:node-id 
~ if n E: PRESENT then NODE_PUBLICS[n]jj, MAJORITY)) 

INSTANLNOLS/GNATORY: ~:3K : public-k:ey ~k E: ALL_OWN_NODE_PUBLICS 1\ 
check-signature (PROPOSAL, k)l 

TOO-EARLY: now - LATEST_T/MESTAMP < cooling-nff-interual 

Effects: 

if ~SIGNATURES_OF_MAJOR/TLOF_PRESENTS then 
~sign(ANNOUNCEMENT, NODE-PRIVATE), PHASE= 2l 

else~ 

PROPOSAL-CYCLE-# t PROPOSALS-PENDING, 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FUNCTIONS '), 
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MINIMUM_QUORUM = NEPI_MJNIMUM_QUORUM, 

MINIMUM_MARGIN = NEW_MJNIMUM_MARGIN, 

SUICIDE-INTERVAL= NEPI_SUIC!DE_JNTERVAL~ 

REMOVE-NODES: D-function 

Input: 

ANNO UNCEMENT:signatured 

<NODES_TO_REMOVE:set of node-id 
PROPOSAL_CYCLE_fl :integer, 

CYCLE = CYCLE-# :integer, 

COMPRESSED_HJSTORY = :integer, 
remove= :announcement-kind>, 

PROPOSAL :signatured 

<NODES_TO-REMOVE:set of node-id 

LATESLTIMESTAMP:time, 

PROPOSAL-CYCLE-# :integer, 

propose-remove = :proposal-kind> 

Comment: The node ids of the NODES_TO_REMOVE are removed from 
NODES_fN_USE, and all secret table entries for the NODES_TO_REMOVE are 
erased. The removed nodes commit suicide. 

Exceptions: 

NO_SUCH_NODE_JN_USE: ~NODES-REMOVED C NODES_JN_ USE 

REMOVJNG_PRESENT: 3n:node-id fn E: NODES-REMOVED 1\ n E: PRESENT 

PROPOSALNOT_PENDING: PROPOSAL-CYCLE-# t PROPOSALS-PENDING 

INSUFFICIENT _TR USTEE-2-SIGNATURES: ~check-signatured 
(ANNOUNCEMENT-DEFINITION, trustee-2-publics, trustee-2-quorum) 

INSTANT-ALREADLSIGNED-ANNOUNCEMENT: PHASE= 21\ 
~(let SJGNATURES_OF_MAJORITLOF_PRESENTS = 

check-signatured (ANNOUNCEMENT, ~ 'v"n:node-id 
~ if n E: PRESENT then NODE_PUBLICS[n]! l. MAJORITY)) 

INSTANLNOT_SJGNATORY: ~ 3 K:public-key ~k E: ALL_OWN_NODE_PUBLICS 1\ 
check-signature (PROPOSAL, kH 

TOO_EARLY: now -LATEST-TIMESTAMP <cooling-off-interval 

Effects: 

if ~SIGNATURES_OF_MAJORITLOF-PRESENTS then 
!sign(ANNOUNCEMENT, NODE-PRIVATE), PHASE= 2~ 

else! 

PROPOSAL-CYCLE-# t PROPOSALS-PENDING. 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FUNCTIONS '), 

69 



NODES_IN_USE = 'NODES_IN_USE'- NODES_TO_REMOVE, 

USED-NODE_IDS = 'USED_NODE_IDS' u NODES_TO_REMOVE, 

APPLIED = 'APPLIED'- NODES_TO_REMOVE, 

'v"n:nodc-id f if n E: NODES_TQ_REMOVE then 

fPARTIAL_KEYS[n] =erased, 

'v"i:integer f if 1 ~ i~ SUB-PARTIALS_REMAJNING[n] then 
fSUB-PARTIALS[n][i] = erasedllll 

if OWN_NODE E: NODES_TO_REMOVE then suicide (O)l 

Trustee 1 D-functions 

The PROPOSE and CANCEL_PROPOSAL functions were discussed above as 

they cross over the boundary between trustee level 1 and trustee level 2. The 

remaining functions covered in this section are illustrated in Figure 1. 

The APPLY function takes any suitably certified node in a "veteran" state 

(i.e. a node that has been present before), and makes it "applied," that is dedi-

cates it to a particular application and disqualifies it from being the replacing 

node in a restart. The CHANGE_PRESENT function transfers nodes between the 

present and participated states, and also may change the current majority. The 

RESTART function was touched on in Chapter IV, and is simply a way for a 

replacing node to resume the application processing of the disabled replaced 

node. The PARTICIPATE function can be used to transfer a single node from 

some state outside the participated state to the participated state, an effect 

which is usually achieved by a key change. 

The remaining two functions are relate.d. First, the CREATE-KEYS function 

is called and results in each node forming a new set of keys, and outputting the 

appropriate public keys. These public keys are then used in conjunction with 

un-synchronized D-functions, described in the following section, to distribute 

new partial and sub-partial keys among the nodes hoping to participate in the 

key change. Other synchronized a-functions may be taking place while these 



keys are exchanged. Finally, during some later cycle, the CHANGE_KEYS a

function is called. It defines the new set of participated nodes and causes all 

business of the network to be conducted under the new keys. 

Again, there are common exceptions and parts of the effects which provide 

synchronization. The function definitions are as follows: 

PROPOSE: D-function 

Input: 

ANNO UN CEMENT _DEFINITION:signatured 

Output: 

<PROPOSALDEFINITION: 

* <NODE_CERTIFIED:node-id 

NODE-KEY: public-key, 

APPLICATION_KEY:public-key, 

NODES_RESTARTABLE:set of node-id>, 

*<NEW_MJNIMUM_QUORUM :integer, 

NEW_MJNIMUM_MARGIN :integer, 

NEW_SUJCJDE_JNTERVAL :integer>, 

* <NODES_TQ_REMOVE:set of node-id>, 

KJND_QF_PROPOSAL :proposal-kind 

CYCLE = CYCLE-# :integer, 

COMPRESSED-HISTORY= :integer, 

propose= :action-kind> , 

PROPOSAL : signed 

<PROPOSALDEFINITION:, 

LATEST_T/MESTAMP:tim.e, 

'CYCLE' = CYCLE_fl :integer, 

KIND_QF_PROPOSAL :proposal-kind> 

Comment: A Signed copy of a definition of the proposed action, PROPOSAL, is 
output which includes the latest single timestamp of the quorum of nodes 
signing the announcement. 

Exceptions: 

INS UFFICIENLTR USTEE-LSIGNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT-ALREADLSIGNED_ANNOUNCEMENT: PHASE= 21\ 

Effects: 

~(let SIGNATURES_QF_MAJORITLOF_PRESENTS = 
check-signatured(ANNOUNCEMENLDEFINITION, ~'dn :node-id 

f if n c PRESENT then NODE-PUBLICS[n]ll. MAJORITY)) 
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if ~SJGNATURES_OF_MAJOR!TY_OF_PRESENTS then 
~sign (ANNOUNCEMENLDEFINITION) , PHASE= 2~ 

else~ 

CYCLE= 'CYCLE'+1, 

PHASE= 1. 

COMPRESSED_HJSTORY = 
compress('CONSENSUS_ V-FUNCTIONS '), 

CYCLE-# E PROPOSALS_PEND!NG, 

LATEST-TIMESTAMP= latest-signature (ANNOUNCEMENT-DEFINITION), 

sign(PROPOSAL, NODE_PRJVATE)~ 

CANCEL-PROPOSAL: G-function 

Input: 

ANNOUNCEMENT_DEFINITION:signatured 

<PROPOSALS_TO_CANCEL :set of integer, 

CYCLE = CYCLE-# :integer, 

COMPRESSED_HJSTORY = :integer, 

cancel= :action-kind> 

Comment: The PROPOSALS_TO_CANCEL are removed from 
PROPOSALS_PENDING and therefore can no longer be used. 

Exceptions: 

BAD-PROPOSALS: ~PROPOSALS_TO_CANCEL!: PROPOSALS_PENDJNG 

INSUFFICIENT _TR USTEE_LSIGNATURES : ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

JNSTANT-ALREADLSIGNED-ANNOUNCEMENT: PHASE= 2/\ 

Effects:· 

~(let SIGNATURES_OF_MAJORITLOF_PRESENTS = 
check-signatured (ANNO UN CEMENT _DEFINITION, ~ "v'n:node-id 

~ ifn E PRESENT thenNODE_PUBLJCS[n]~l. MAJORITY)) 

if ~SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
~sign (ANNOUNCEMENT-DEFINITION), PHASE= 2~ 

else ~ 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FUNCTIONS '), 

PROPOSALS_PENDING =PROPOSALS-PENDING- PROPOSALS_TO_CANCEL~ 
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APPLY: D-function 

Input: 

ANNOUNCEMENT-DEFINITION:signatured 

<NODES_TO_APPLY:set of node-id 

CYCLE = CYCLE_ff :integer, 

COMPRESSED-HISTORY= :integer, 
apply = :action-kind> 

Comment: The identified node(s) are added to APPLIED, and all their 
certifica_tion is removed. They expunge their own set of trustee partials. 
The subJect nodes can now adopt an application, and can no longer be 
used as the replacing node in a restart. 

Exceptions: 

BAD-NODES : ~NODES_TO-APPLY C: NODES_IN_USE 

ALREADY-APPLIED : 3n:node-id !n E: NODES_TO-APPLY /\ n E: APPLIED~ 

INADEQUATE_CERTIFICATION: ~ 3n:node-id !n E: NODES_ TO-APPLY/\ 
n t. CERTIFICATION[n] 

INS UFF!CIENLTR USTEE_LSIGNATURES : ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT-ALREADY-SIGNED-ANNOUNCEMENT: PHASE= 2/\ 

Effects: 

~(let SIGNATURES_OF_MAJORITY_OF_PRESENTS = 
check-signatured(ANNOUNCEMENT_DEFINITION, !'Vn:node-id 

! if n E: PRESENT then NODE_PUBLICS[n]ll. MAJORITY)) 

if ~SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
!sign(ANNOUNCEMENT_DEFINITION) , PHASE= Zl 

else! 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FUNCTJONS '), 

Va:node-id! if a E: NODES_TO-APPLY then CERTIFICATION[ a] = empty l, 
if OWN_NODE E: NODES_TO-APPLY then "v"n:node-id 

! ifn E: CERTIFICATION[OWN_NODE] then 
OWN_TRUSTEE_PARTIALS[n] =erased!. 

APPLIED= 'APPLIED' u NODES_TO-APPLYl 

CHANGE_PRESENT: D-function 
Input: 

ANNOUNCEMENT_DEFINITION:signatured 

<NODES_TO_BECOME-PRESENT:set of node-id 

NODES_TO_BECOME-ABSENT:set of node-id 

NEW _MAJORITY: integer, 
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CYCLE = CYCLE-# :integer, 

COMPRESSED_HJSTORY =:integer, 
change-presents= :action-kind> 

MIN!MUM_PARTIALS_RECEJVED :signatured 

<KEY_CREATJON_# = :integer, 

NODES_RECEJVED-FROM :set of node-id 
partials-received = :transfer-kind> 

Output: 

*SUB-PARTIALS_RELEASED:set of partial-key 

Comment: The nodes to be made present are made present, the nodes to be 
made absent are made absent, and the majority assumes the new value 
provided. The new configuration must be compatible with the 
MJN!MUM_MARGJN, and the QUORUM. The MINIMUM_PARTIALS_RECEIVED 
signed by the NODES_TO_BECOME_PRESENT ensure that the nodes made 
present have received all the partial keys they may require. If the 
NEW-MAJORITY is less than the current quorum, but not less than the 
minimum quorum, then sub-partials are publicly released so that the 
effective quorum is lowered to the NEW_MAJORITY. 

Exceptions: 

NEW_MAJORJTY_TOO_SMALL : NEW-MAJORITY< MINIMUM_ QUORUM 

NEW_MAJORJTY_TOO_B/G: NEw_MAJORITY >(let NEW_NODE_COUNT = 
cardinality(PRESENT) +cardinality (NODES_TO_BECOME_FRESENT)

cardinality (NODES_TO_BECOMK.ABSENT)) 

NEW_MAJOR/TY_TOO_SMALL : MINJMUM_QUORUM > NEW_MAJORITY 

INSUFFICIENLMARGIN: NEW_NODE_COUNT > 
(NEW_MAJORITY x 2)- MINIMUM_MARGIN 

NOT _ABSENT: ~NODES_TO_BECOME_PRESENT (ABSENT 

NOT_PRESENT: ~NODES_TO_BECOME-ABSENT (PRESENT 

INSUFFICIENT_MJNIMUM_PARTIALS_RECEIVED-FROM_S/GNATURES: 
~check-signatured (MINIM UM_PARTIALS_RECEIVED , 

NODE_PUBLJCS[(PRESENT u NODES_TO_BECOME_FRESENT)
NODES_ TO_BECOME_ABSENT ], 

NEfLNODE_COUNT) 

INS UFF!CIENT _MINIM UJ.LPARTIALS_R ECEIVED_FROM : 3 n:node-id 
~n E: NODES_TO_BECOME_PRESENT 1\ 

n ~ NODES-RECEIVED-FROM l 
INSUFFICIENT -.SUB-PARTIALS: 

3n:nodc-id ~n E: NODES_JN_USE 1\ 3i:integer 
~LAST_CHANGES[n] = il\ 
SUB-PARTIALS_REMAINJNG[n] < QUORUMS[i]-NEW_MAJORITYll 

INSUFFICIENT _TR USTEE-LSIGNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT-ALREADY-SIGNED-ANNOUNCEMENT: PHASE= 21\ 
~(let SIGNATURES_OF_MAJORITY_OF-PRESENTS = _ 
check-signatured(ANNOUNCEMENT-DEFINITION, ~~n:node""id 

~ if n E: PRESENT then NODE_PUBLICS[n]ll, MAJORITY)) 
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Effects: 

if ~SIGNATURES_OF_MAJORITLOF-PRESENTS then 
~sign(ANNOUNCEMENLDEF!NITION), PHASE: 8J 

else~ 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FVNCTJONS '), 

PRESENT= ('PRESENT'-NODES_TO.JJECOME-ABSENT) lJ 
NODES_TO_BECOME_PRESENT, 

MAJORITY= NEW_MAJORITYJ 

if MAJORITY< QUORUM then 'Q-'n:node-id 
~if n E: NODES_JN_ USE 1\ (let NS_QUORUM = 

QUORUMS[LAST_CHANGES[n]]) > NEJL!IAJORITY then 
HSUB-PARTIALS_REMAINING[n] = 

'SUB-PARTIALS_REMAINING'[n]
NS_QUORUM-NEW_MAJORITYj, 

f'Q-'i:integer ~if NS_QUORUM < i~ NEW-MAJORITY then 
SUB-PARTIALS[n] 

['SUB-PART I ALS_REMAI N IN G '[ n] -i-
NEW _MAJORITY] E: SUB -PARTIALS-RELEASED~~ J ~ 

RESTART: D-function 

Input: 

ANNOUNCEMENT_f)EFJNIT/ON:signatured 

<REPLACED-NODE :node-id 

REPLACING_NODE :node-id 

Output: 

CHECKPOINT: (see ISSUE_CHECKPOINT ), 

CYCLE = CYCLE-II :integer, 

COMPRESSED-HISTORY= :integer, 

restart= :action-kind> 

*PARTJAL_FOR-.A.SSUME_APPLICATION:signed 

<REPLACED_NODE:node-hl. 

REPLACING_NODE :node-id 

PARTJAL_SUPPLIED :sealed<partial-key>, 

RESTART_to_ASSUME_APPLICATION =:transfer-kind> 

Comment: The replaced node, which must be applied and not present, is in 
effect REMOVE_NODESed. The replacing node must be certified to 
replace the replaced node, and it becomes applied. The replacing node _is 
supplied with partials for the replaced node. These are used m 
ASSUME_APPLICATION to recover the replaced node's application data 
and messages sent after the last checkpoint. 
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Exceptions: 

BAD-REPLACED-NODE: REPLACED-NODE E: PRESENT V 
REPLACED-NODE~ NODES_IN_ USE 

BAD-REPLACEMENT-NODE: REPLACING-NODE t. PARTICIPATED 
REPLACING_NODE E: APPLIED 

INADEQUATE_CERTIFICATION: REPLACED-NODE~ 
CERTIFICATION[REPLACING_NODE] 

INS UFFICIENLTR USTEE_LS/GNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT -ALREADLS/GNED-ANNOUNCEMENT: PHASE = 2/\ 
~(let S/GNATURES_OF_MAJOR!TLOF_PRESENTS = 
check-signatured(ANNOUNCEMENLDEF!NIT!ON, ~'dn : node-id 

~if n E: PRESENT then NODE_PUBLICS[n]l!. MAJORITY)) 
Effects: 

if ~SIGNATURES_OF_MAJORITY_OF_PRESENTS then 
~sign(ANNOUNCEMENT_DEF!NIT!ON), PHASE= 2! 

else~ 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED_HISTORY = 
compress('CONSENSUS_ V-FUNCTIONS'), 

REPLACED-NODE~ NODES_IN_ USE, 

REPLACED-NODE E: USED_N ODE_IDS I 

APPLICATION_PUBLICS[REPLACING_NODE] = 
APPLICATION_PUBLICS[REPLACED_NODE], 

REPLACING_NODE E: APPLIED, 

REPLACED_NODE ~ APPLIED, 

PARTIAL_KEYS[REPLACED-NODE] = erased, 

'Vi:integer ~if 1 ~ i~ SUB-PARTIALS_REMAINING[n] then 
~SUB-PARTIALS[REPLACED_NODE][i] = era.sedj, 

PART/AL_SUPPLIED = 'PARTIAL-KEYS '[REPLACED-NODE], 

seal(PARTIALSUPPLIED, NODE_PUBL!CS[REPLACING_NODE]), 

sign.(PARTIAL_FOR_ASSUME_APPLICATION, NODE-PRIVATE), 

if OWN_NODE = REPLACING_NODE then 'Vn:node-id 
~if n E: CERTIFICATION[REPLACING_NODE] then 

OWN_TRUSTEE-PARTIALS[n] = erasedn, 

if 0 W N _NODE = REPLACED-NODE then suicide ( 0) l 



pARTICIPATE: D-function 

Input: 

ANNOUNCEMENT_DEFINITION:signatured 

<NODE_PARTICIPATED :node-id 

NODES_RECEIVED_FROM:set of node-id 

PARTIALS_ALR EADLR ECEIVED: signatured 

Output: 

<KEY_CREATION_# = :integer, 

NODES_RECEIVED.J'ROM:set of node-id 

partials-received = :transfer-kind>, 
CYCLE = CYCLE-# :integer, 

COM PRES SED_H IS TORY= :integer, 
participate = :action-kind> 

*SUB-PARTIALS._SUPPLIED:signed 

<CYCLE = CYCLE_# :integer, 

SUB-PART/ALS:sealed<:table[node-id] of partial-key>, 

PARTICIPATE_to_NEW_PARTICIPANLRECEIVE =: 

transfer-kind> 

*PARTIALS-AND_SUB-PARTIALS:table[PARTICIPATED] of 

PARTIAL_AND_SUB-PARTIALS :signed 

<RECIPIENT:node-id 

PARTIAL : sealed< partial-key>, 
NUMBER_OF_SUB-PARTIALS:integer, 

SUB-PARTIALS:sealed<table[integer] of partial-key>, 

PARTICIPATE_to_RECEIVE_NEW_PARTICIPANT =: 

transfer-kind> 
Comment: Participated nodes each supply the node to be participated with 

sub-partials of every node for which the node to be participated is miss
ing partial keys . The node to be participated issues partials and sub
partials for itself to all the participated nodes, just as in issue-partials. 
Two unsynchronized a-functions are allowed: 
RECEIVE_NEW_PARTICIPANT for the participated nodes to pick up their 
partials and sub-partials (not as new), and NEW_PARTICIPANT_RECEIVE 
for the entering node to pick up a set of sub-partials. 

Exceptions: 

BAD_NODE_PAJ?TICIPATED: NODE.YARTICIFATED E PARTICIPATED V 
NODE-PARTICIPATED ~ NODES_IN- USE 

INSUFFICIENT_SUB-PARTIALS: 3n:node-idtn E: NODES-IN_ USE 1\ 
LAST_CHANGES[NODE-PARTICIPATED] < LAST_CHANGES[n] 1\ 
SUB-PARTIALS_REMAINING[n] < lj 

BAD-ALREADY-RECEIVED-FROM_S/GNATURES: ~check-signatured 
(PARTIALS-ALREADLRECEIVED. 
NODE_PUBLICS[NODES_RECEIVED-FROM] V 

NODE_PUBLICS[OWN_NODE]. 
cardinality (NODES-RECEIVED-FROM+ 1)) 
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JNSUFFICIENT_TRUSTEE_LSIGNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT......ALREADLSIGNED-ANNOUNCEMENT: PHASE= 21\ 
~(let SIGNATURES_OF_MAJORITLOF_PRESENTS = 
check-si~na.tured(ANNOUNCEMENLDEF!NITION, ~'<>~n : node-id 

~ 1f n E: PRESENT then NODE_PUBLICS[n]!j. MAJORITY)) 
Effects: 

if ~SIGNATURES_OF-MAJORITLOF_PRESENTS then 
~sign (ANNOUNCEMENT_DEF!NITION), PHASE= 2j 

else ~ 

CYCLE= 'CYCLE'+1, 

PHASE= 1. 

COMPRESSED-HISTORY= 
compress('CONSENS US_ V-FUNCTJONS '), 

SUB -PARTIALS_REMAJNING[NODE-PARTICIPATED] = 
NUMBER_OF_SUB-PARTIALS, 

if 3n:node-i~n E NODES_IN_ USE 1\ 
LAST_CHANGES[NODE_PARTICIPATED] < LAST_CHANGES[n] then 
SUB-PARTIALS_REMAINING[n] = 

'SUB -PARTIALS_REMAINING'[n]-1j 

if NODE-PARTICIPATED~ OWN_NODE then 

~~ 
p :node-id ~ if p E PARTICIPATED 1\p ~ NODES_RECEIVED_FROM then 

~SUB-PARTIALS[p] = 
SUB-PARTIALS[p]['SUB-PARTIALS_REMAINING'[p]], 

else 

sea.l(SUB-PARTIALS[p]. NODE_PUBLICS[NODE-PARTICIPATED])!, 

sign(SUB-PARTIALS_SUPPL!ED, NODE-PRIVATE)!, 

~~ 
p:node-id l if p E PARTICIPATED 1\p ~ NODES-RECEIVED-FROM then 

~with PARTIALS-AND_SUBPARTIALS[p] 

~RECIPIENT = p, 
PARTIAL = forrrLJfla.rtia.l (p, PARTJAL_SEED, 

APPLICATION_PRIVATE, 
QUORUM), 

sea.l(PARTIAL, NODE_PUBLICS[p]), 

'<>~i:integer ~if 1 ~ i~ NUMBER_OF_SUBPARTIALS then 

~SUB-PARTIALS[i] = formrpa.rtia.l( 
p, PARTIAL-SEED, 
form-pa.rtia.l(i, PARTIAL-SEED, 

APPLICATION-PRIVATE, 
QUORUM) , 

QUORUM) 

sea.l(SUB-PARTIALS, NODE_PUBLJCS[p]])ll 

sign(PARTIALAND-SUB-PARTIALS, NODE-PRIVATE)!, . 
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suicide ((earliest-signature (ANNOUNC'EMENT ) 
-DEFINITION + 

SUICIDE-INTERVAL)_ now())~~~ 

CREATE-KEYS: ~function 

Input: 

ANNO UN CEMENT -DEFINITION :signatured 

Output: 

<NEFY-QUORUM:integer, 

NEW_SUB-PARTIALS-NEEDED :table[NODES_IN_USE] of integer, 
CYCLE = CYCLE-II :integer, 

COMPRESSED-HISTORY= :integer. 
create-keys= :action-kind> 

NEW-KEYS: signed 

<KEY-CREATION_#= :integer, 

NEW-APPLICATION_PUBL!C:public-key, 

NEW_NODE_PUBLIC:public-key, 

CREATE_KEYS_ta_ISSUE_NEW_PARTIALS&CHANGE_KEYS = : 
transfer-kind> 

EXTENDERS:table[integer] of 

EXTENDER:signed 

<KEY-CREATION_#= :integer. 
INDEX :integer, 

EXTENS/ON:sealed<table[integer] of partial-key>. 
CREATE-KEYS_ta_NEW_PARTICIPANT_RECEIVE =: 

transfer-kind> 
Comment: New node and application keys are created. Also a new seed for 

the new partial keys, which will use the new quorum, is created. The ini
tial number of sub-partials needed for each node is recorded. New pub
lics are output. The issue new partials and receive new partials unsyn
chronized actions are allowed. This action may occur more than once to 
change the new quorum, even though no change to new keys has 
occurred. The set of nodes the instant node would allow to become parti
cipated in a CHANGE_KEYS is emptied. If a node is to become partici
pated but lacks partials for some other node which is not going to be par
ticipated, then the first node must be the subject of a PARTICIPATE 
before a CHANGE_KEYS. 

Exceptions: 

NEW_QUORUM_TOO_SMALL : NEW_QUORUM <MINIMUM_ QUORUM 

INS UFF!CIENT-TR USTEE_LSIGNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANT-ALREADY-SIGNED_ANNOUNCEMENT: PHASE= 21\ 
~(let SIGNATURES_OF_MAJORITLOF_PRESENTS = 
check-signatured(ANNOUNCEMENT_DEFINIT!ON, l"v'n:node-id 

~if n E: PRESENT then NODE-PUBLICS[n]ll. MAJORITY)) 
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Effects: 

if ~SIGNATURES_OF_MAJORITY_Qp_pRESENTS then 
~sign (ANNOUNCEMENLDEFINITION), PHASE= 2f 

else l 
CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED_HJSTORY = 
compress('CONSENSUS_ V-FUNCTIONS '), 

KEY_ CREATION_# = 'KEy_ CREATION_# '+1, 

QUORUMS[LAST_CHANGE + 1] = NEW_QUORUM, 

PARTIALS_RECEIVED_FROM =empty, 

APPLICATJON_SEED =create-seed(), 

NEW_APPLICATION_PRIVATE =create-private (APPLICATION_SEED), 

NEW_APPLICATION_PUBLIC =create-public (APPL!CATION_SEED), 
NODE-SEED= create-seed(), 

NEW_NODE_PRIVATE = create-private(NODE_SEED), 

NEW_NODE_PUBLIC = create-public(NODE_SEED), 

PARTJAL_SEED = create-seed()f, 

NEW_SUB-PARTIALS_REMAJNING = NE'rLSUB-PARTIALS_NEEDED, 
~i:integer 

l if 1 < i~ NEW_SUB-PARTIALS_REMAINJNG[OWN_NODE] then 

~/ : integer l if 1 < J < i then 

lwith EXTENDERS[i] 

UNDEX = i, 
EXTENSION[!]= form-partial( 

i, PART!AL_SEED, form-partial 
(J, PART!AL_SEED, 
NEW_APPLICATJON_PRIVATE, 
QUORUMS[LAST_CHANGE + 1]), 

QUORUMS[LAST_CHANGE + l])lll 
seal(EXTENSION, create-public (form-partial 

(i, PARTIAL-SEED, NEW_APPLICATION_PRIVATE, 
QUORUMS[LAST_CHANGE + 1]))), 

sign(EXTENDER, NEW_NODE_PRJVATE)f 

CHANGE-KEYS: D-function 
Input: 

ANNOUNCEMENT_DEFINITION:signatured 

<NODES_PARTICIPATING:set of node-id, 
EVERy_p ARTICIF ANTS_NE W _KEYS :table [node-id] of 

NEW_KEYs:JiioM_CREATE_KEYS :signed 
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<KEY_ CREATION_# = :integer, 

NE fLAPPL/ CATION_PUBL/C:public-key, 

NEW -NODE_PUBLIC:public-key, 

CREATE_KEYS_to_ISSUE_NEW_PARTIALS&CHANGE_KEYS =: 
transfer-kind> 

CYCLE = CYCLE-# :integer, 

COMPRESSED-HISTORY= :integer, 
change-keys = :action-kind> 

MINIMUM_PARTIALS_RECEIVED :signatured 

<KEY_ CREATION_# = :integer, 

NODES_RECEIVED_FROM :set of node-id 

partials-received = :transfer-kind> 

Comment: The new keys, partials and sub-partials for all the included nodes 
are changed to their new values that have previously been supplied. 
(Conflict between the supplied publics and any publics already received 
are ignored because this causes no real security problem, and if the a
function were blocked by a conflict, a single node could deadlock the sys
tem.) The new keys, partials, and sub-partials for all un-included nodes, 
except the present node, are erased. The set of participated nodes is 
changed to the included nodes. 

Exceptions: 

INSUFFICIENT-PARTICIPATION : ~PRESENT C NODES-PARTICIPATING 

BAD-PARTICIPANTS : ~NODES-PARTICIPATING C NODES_fN_ USE 

INVALID-NEW-KEYS : 3n:node-id ~n E: NODES-PARTICIPATING 1\ 
~check-signature (EVERLPARTICIPANTS_NEW_KEYS[n], 

NODE-PUBLICS[n]) 

PARTICIPANTS_LACK_NON-PARTICIPANTS_PARTIALS:3p, n:node-id 
fp E: NODES_PARTICPATING 1\ 
n E: (NODES_IN_ USE-NODES-PARTICIPATING) 1\ 
LAST_ CHANGES~]< LAST_CHANGES[n]l 

INSUFFICIENT _MINIM UM_PARTIALS_RECEIVED_FROM_SIGNATURES: 
~ check-signatured(MINIMUM_PARTIALS-RECEIVED, 

N ODE_P UBLI CS [NODES-PARTICIPATING], 
cardinality (NODES-PARTICIPATING)) 

INS UFFICIENLMINIM UM_PARTIALS_RECEIVED_FROM : 
~NODES_PARTICIPATING C NODES-RECEIVED-FROM 

NEW_QUORUM_TOO_BJG: QUORUMS[LASLCHANGE + 1] >MAJORITY 

INS UFFICIENLTR USTEE-LSIGNATURES: ~check-signatured 
(ANNOUNCEMENT, trustee-1-publics, trustee-1-quorum) 

INSTANLALREADY_S!GNED-ANNOUNCEMENT: PHASE= 21\ 
~(let SIGNATURES-OF_MAJORITLOF-PRESENTS = . 
check-signatured(ANNOUNCEMENT_DEFINITION, ~"dn :node-id 

~if n E: PRESENT then NODE_PUBLICS[n]ll . MAJORITY)) 

Effects: 

. if ~SIGNATURES_OF-MAJORITLOF-PRESENTS then 
(sign(ANNOUNCEMENT_DEFINITION), PHASE= 2l 
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else~ 

CYCLE= 'CYCLE'+l, 

PHASE= 1, 

COMPRESSED-HISTORY= 
compress('CONSENSUS_ V-FUNCTIONS'}, 

PARTICIPATED =NODES-PARTICIPATING, 

QUORUM= QUORUMS[LAST_CHANGE + 1], 

SUB-PARTIALS-REMAINING= NEW_SUB-PARTIALS_REMAJNING, 

NODE_PUBLICS[OWN_NODE] E ALL_OWN_NODE_PUBLICS, 

PARTIALS_RECEIVED_FROM = NODES_PARTICIPATING, 

V'p:node-id ~ if p E PARTICIPATED then 

~with EVERY_PARTICIPANTS_NEW_KEYS[p] 

~APPLICATION_PUBLJCS[p] = NEfLAPPLJCAT/ONYUBLJCj, 

NODE_PUBLICS[p] = NEW_NODEYUBLICj, 
PARTIAL_KEYS[p] = NEW_PARTIAL_KEYS[p], 

V'i:integer ~if 1 ~ i~ NEW_SUB-PARTIALS_REMAINING[p] then 
SUB-PARTIALS[p][i] = NEW_SUB-PARTIALS[p][i]jj, 

suicide ((earliest-signature (ANNOUNCEMENT_DEFJNITION) + 
SUICIDE-INTERVAL)- now(})j 

§7 Un-Synchronizcd 0-functions 

Presented are the remaining a-functions, which support the o-

functions of the previous section and allow release of information. 

The previous section was concerned with synchronized D-functions, which 

are designed in such a way that every node will accept only the same sequence 

of calls and in the same order. The present section is concerned with the other 

D-functions: those which can be invoked in many possible orders. The fact that 

they can be used in a less structured way than those previously discussed does 

not mean that these Q-functions are an invitation to chaos. On the contrary, 

some of these Q-functions provide increased reliability and robustness of the 

network even in spite of the trustees. Others of these D-functions have no effect 

on a node's state, and are mer.ely used to obtain signed and possibly sealed data 

about the node's state. Yet others are tied directly into the synchronized D-



functions, and merely act as extensions of these D-functions to allow additional 

rounds of information exchange. 

Synchronized D-function Support 

This subsection defines five un-synchronized D-functions. The first two are 

used between the initial CREATE-KEYS and the closing CHANGE-KEYS, as 

described in the previous section. The first of these, ISSUE_NEW_PARTIALS, 

takes as input the new public keys of a node released during CREATE_KEYS and 

outputs partial keys and sub-partial keys sealed with the new public key 

received. The second D-function, RECEIVE_NEW_PARTIALS, takes as input the 

output of this first D-function created by another node and simply records the 

partials and sub-partials after unsealing with its new private key. 

A second pair of D-functions serves a similar purpose, but is used following a 

PARTICIPATE D-function call. One D-function, RECEIVE_NEW_PARTICIPANT, is 

used by all but the node to be participated, and simply records the public, par

tial, and sub-partial keys released by the subject node during the PARTICIPATE. 

The other D-function of the pair, NEW_PARTICIPANT_RECEIVE, is used by the 

subject node to collect the sub-partials and extenders provided it by the non

subjects during the PARTICIPATE. The fifth and final D-function, 

ASSUME-APPLICATION, allows the replacing node of a restart to assume the 

application key of the replaced node. 

The following are the unsynchronized supporting D-functions: 
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JSSUE-NEW-PARTIALS:D-function 

Input: 

SUPPLIER :node-id 
NEW _pUBLICS : signed 

Output: 

<KEY_CREATION_# = :integer, 

SUPPLIER_NEW_NODE-PUBLIC:public-key, 

SUPPLIER_NEW_APPLICATION-PUBLIC:public-key, 

CREATE_KEYS_to_JSSUE_NEW_PARTIALS&CHANGE_KEYS = : 
transfer-kind> 

PARTIAL-AND-SUB -PARTIALS :signed 

<KEY_ GREAT! ON_# =:integer, 

SUPPLIER:node-id 

PARTIAL: sealed< :partial-key>, 

SUB -PARTIALS:sealed< :table[integer] of partial-key>, 
ISSUE_NEW_PARTIALS_ta_RECE!VE_NEW_PARTIALS =: 

transfer-kind> 

Comment: The supplied new public application key is used to seal the partial 
and the number of sub-partials for each node established in 
CREATE_KEYS. 

Exceptions: 

INVALJD_SUPPLIER : SUPPLIER ~ NODES_/N_ USE, 

INVALJD_SUPPLIER_SIGNATURE: ~check -signature (NEW-PUBLICS, 
NODE_PUBL!CS(SUPPLIER)), 

Effects: 

PARTIAL= form-partial(SUPPLIER, PARTJAL_SEED, 
NEW_APPL!CAT!ON_PRJVATE, QUORUMS[LAST_CHANGE + 1]), 

seal(PARTIAL, SUPPLIER_NEW_NODE_PUBLIC), 

\:ti:integer 
~if 1 ~ i~ NEW_SUB-PARTIALS-REMAINJNG[OWN_NODE] then 

~SUB-PARTIALS[i] =form-partial 
(SUPPLIER, PARTJAL_SEED , 

farmrpartial (i, PARTJAL_SEED, 
NEW_APPLICATJON_PRIVATE, 
QUORUMS[LASLCHANGE + 1]) , 
QUORUM$[LAST_CHANGE + l])l. 

seal(SUB-PARTIALS, SUPPLIER-NEW_NODE_PUBLIC), 

sign(PARTIAL-AND_$UB-PARTIALS, NODE-PRIVATE) 

84-



RECEIVE-NEW _PARTIALS: D-function 

Input: 

SUPPLIER :node-id 

PARTIAL-AND-SUB-PART!ALS:signed 

<KEY_CREATION_# = :integer, 
OWN_NODE:node-id 

PARTIAL: sealed< :partial-key>, 

SUB-PARTIALS:sealed<:table[integer] of partial-key>. 

JSSUE_NEW_PARTIALS_to_RECE!VE_NEW_PARTIALS =: 
transfer-kind> 

Comment: The new partials and 
JSSUE_NEW_PARTIALS are recorded. 

sub-partials output 

Exceptions: 

INVAL/D_SUPPLIER :SUPPLIER t NODES_fN_USE 

JNVALJD_SUPPLIER_SJGNATURE: check-signature 
(PARTIAL-AND_SUB-PARTIALS, NODE_PUBL!CS[SUPPLIER]} 

Effects: 

unseal (PARTIAL, NEW_APPLJCATJON_PRJVATE), 

NEW_PARTIAL-KEYS[SUPPLIER] =PARTIAL, 

unseal(SUB-PARTIALS, NEW_APPLICATION_PRIVATE) 

by 

~i:integer ~if 1 ~ i~ NEW_SUB-PARTJALS_REMAJNJNG[SUPPUER] then 

NEW_SUB-PARTJALS[SUPPLIER][i] = SUB-PARTIALS[i]l, 

SUPPLIER e: PARTJALS_RECEJVED_FROM, 

RECE!VE_NEW_PARTICIPANT:D-function 

Input: 

NODE-BECOM!NG-PARTICIPATED:node-id 

PARTIAL-AND-SUB -PARTIALS :signed 
< OWN_NODE = RECIPIENT:node-id 

PARTIAL:sealed<:partial-key>. 

NUMBER_OF_SUB-PARTIALS :integer, 

SUB-PART/ALS:sealed<:table[integer] of partial-key>, 
PARTICJPATE_to_RECEIVE_NEW_PARTICIPANT =: 

transfer-kind> 
Comment: The participated nodes making an addition~! node participa_ted 

are allowed to use this a-function to record the partials and sub-partials 
issued to them by the entering node during the BECOME_JJARTICIPATED. 

Exceptions: 

BAD_SJGNATURE: check-signature 
(PARTIAL-AND-SUB-PARTIALS I 

NODE_PUBL!CS[NODE-BECOM!NG_PARTICIPATED]) 
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Effects: 

unseal (PARTIAL, APPLICATION_PRIVATE), 

pART I AL_KEYS [NODE_BECOM!NG_PARTICIPATED] = PARTIAL I 

~unseal (SUB-PARTIALS, APPL!CATION_PRIVATE) 

V'i~ if 1 ~ i~ NUMBER_OF_SUB-PARTIALS then 

SUB-PARTIALS[NODE_BECOMING_PARTICIPATED][i] = 
SUB-PART!ALS[i]jj, 

NODE-BECOMING_PARTICIPATED E: PARTIALS_RECEIVED_FROM, 

NEW _PARTICIPANT _RECEIVE: D-function 

Input: 

SUB-PART/AL_SUPPLIERS:set of node-id 

ALLSUB-PARTIALS_SUPPLIED:table[SUB-PARTIALSUPPLIERS] of 

SUB-PARTIALS_SUPPLIED :signed 

<CYCLE = CYCLE_# :integer, 

SUB-PART/ALS:sealed<:table[node-id] of partial-key>, 
PARTICIPATE_to_NEW_PARTICIPANT_RECEIVE = : 

transfer-kind.> 
EXTENDERS:table[node-id] of 

EXTENDER: signed 

<KEY_ CREATION_# = :integer, 
INDEX :integer, 

EXTENS/ON:sealed< :table[integer] of partial-key>. 
CREATE_KEYS_to_NEW_PARTICIPANLRECEIVE = : 

transfer-kind> 
Comment: The node which has become participated is allowed to use this a

function to obtain the sub-partials issued it by the quorum of participated 
nodes during a PARTICIPATE, and thereby obtain a full set of partials and 
also · sub-partials. It is then able to list itself in its 
PARTIALS_RECEIVED_FROM, indicating it has received sufficient partials 
and allowing it to become present. 

Exceptions: 

NOT_ENOUGlLSUPPLIERS : cardinality(SUB-PARTIAL-SUPPLIERS) < 
QUORUM . 

BAD.....SUPPLIERS: ~SUB-PART/AL_SUPPLIERS c PARTICIPATED 

BAD.....SUPPLIER_SJGNATURE: 3n:node-id in E: SUB-PARTIAL-SUPPLIERS 1\ . 
~check-signature (SUB-PARTIALS-SUPPLIED[n], NODE_PUBLICS[nB 

BAD-EXTENDER.....SIGNATURE: 3n:node-id 
~LAST_CHANGES[OWN_NODE] < LAST_CHANGES[n] 1\ 
~check-signature (EXTENDERS[n], NODE-PUBLICS[n]) l 

. WRONG-EXTENDER: 3n:node-id 
~LAST_CHANGES[OWN_NODE] < LAST-CHANGES[n] A 

~with EXTENDERS[n] 
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Effects: 
fiNDEX ¢. SUB-PARTIALS_REMAIN!NG[n]B 

'v"s:node-td ~if s E: SUB-PARTIAL-SUPPLIERS then 

with ALL_SUB-PARTIALS_SUPPL/ED[s] 
unseal (SUB-PARTIALS, APPLICATION_PR!VATE) j, 

'v"p:node-i.d 
~if LAST_CHANGES[OWN_NQDE] < LAST_CHANGES[p] then 

PARTJAL_KEYS[p] = merge-partials('v"s:node-id 

~if s E: SUB-PARTIAL-SUPPUERS then 

with SUB-PARTIAL_SUPPLIERS[s] !SUB-PARTIALS[p] jj ), 
'Q/p:node-id 

! if LAST_CHANGES[OWN_NODE] < LAST_CHANGES[:p] then 
~with EXTENDERS[p] 

~unseal(EXTENSION, create-private (PART!AL_KEYS[p])), 

f'v'i:integer 
! if 1 ~i~ SUB-PART!ALS_REMA!N!NG[:p] then 

SUB-PART!ALS[:p]l:i] = EXTENDER[i]jljl. 
OWN_NODE E: PARTJALS_RECE!VED_FROM 

ASSUME_APPLICATJON: a-function 

Input: 

PARTIAL_SUPPLIERS :set of node-id 

PARTIALS_SUPPLIED :table[node-id] of 

PARTIAL : signed 

<REPLACED-NODE :node-id 

OWN_NODE = REPLACING_NODE:node-id.. 

PARTIAL-BUPPLIED :sealed<:partial-key>, 

RESTART_to_ASSUME_APPLJCATJON = :transfer-kind> 

CHECKPOINT: (see JSSUE_CHECKPOJNT) 
Comment: The replacing node of a restart is enabled to perform this opera

tion, which involves receiving partials for the replaced node, and using 
them to obtain the saved application data from the checkpoint formed by 
the replaced node, and messages sent after the checkpoint was formed. 

Exceptions: 

BAD-SUPPLIERS: ~PART/AL_SUPPLIERS C NODES_JN_ USE 

BAD-BUPPLIER_S/GNATURES: 3n:node-id !n E: PARTIAL-SUPPLIERS 1\ 
~with PARTIALS_SUPPLIED[n] 

~check-signature (PARTIAL , NODE_PUBL!CS[n]) l 
Effects: 

'v"n:node-id ~if n E: PARTIAL-SUPPLIERS then 

with PARTIALS_SUPPUED[n] 
unseal (PARTIAL-SUPPLIED, APPL!CATJQN_PRIVATE)j, 
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'Vn:node-id ~if n E: PARTIAL-SUPPLIERS then 
APPLICATION_PUBLICS = 

merge-partials (with PARTIALS-SUPPL!ED[n]PARTIALSUPPLIED H 

Information Releasing D-functions 

The last two D-functions are given in this subsection. Unlike the previous 

~functions, they are not closely tied to any particular synchronized D-functions. 

They release information about the node's state, but do not alter its state. The 

PARTIALS-RECEIVED D-function allows a node to provide a signed statement 

about those nodes it has received current partial keys from. The 

JSSUE_CHECKPOINT D-function is unique in that it includes no input template, 

which means it does not check any signatures of input parameters, and thus can 

be freely called by anyone. This is appropriate because the output of this o-

function provides, among other things, an authenticated snap-shot of the node's 

public state, which Chapter VII will show to be useful to those seeking to trust 

the network. Another use of checkpoints, that of saving enough of a node's state 

to make restart possible, was mentioned in Chapter IV. A further practical use 

of this D-function is to allow verification of the. state certified into a node, which 

can allow new nodes to skip over a possibly long prefix of synchronized o-

function calls. 

The following are the information releasing un-synchronized D-functions: 

PARTIALS_RECEIVED: D-function 
Input: 

MINIMUM_PARTIALS_RECEIVED:signatured 

<KEY_CREATION-# =:integer, 

NODES-RECEIVED_FROM:set of node-id. 

partials..JT"eceived = :transfer-kind> . . . 
Comment: The instant node adds its signature to the set of node lds mput lff 

this set is a subset of the instant node's PARTIALS-RECEIVED-FROM. 

88 



Exceptions: 

NOT_ALL-PARTIALS_RECEIVED: 3n:node-id 
~n E: NODES-RECEIVED-FROM 1\ 

Effects: 

n ~ PARTIALS_RECEIVED_FROM 1\ 
n ¢: OWN_NODEjl\ 
KEY_CREATION_# ¢: 0 

sign (MINIM UM_PARTIALS-RECEIVED, N ODE_PR!VAT E) 

ISSUE- CHECKPOINT: D-function 

Output: 

CHECKPOINT:signed 

<INDIVIDUAL_ V-FUNCTIONS = : e.ny-type, 

CONSENSUS_ V-FUNCTIONS = : any-type, 

ALL_CURRENLSECRETS : 

sealed<APPLICATION_SECRET_ V-FUNCTIONS = : 
e.ny-typc)' 

ALL-NE'r'I_SECRETS : sealed 
<NEW_APPLICATION_SECRET_ V-FUNCTIONS = : 

any-type), 

checkpoint: transfer-kind> 

Comment: Causes the receiving node to output a signed copy of all its 
INDIVIDUAL_ V-FUNCTIONS and CONSENSUS_ V-FUNCTJONS state. 
A copy of its current secret state sealed with its current 
APPLICATJON_PUBLICS and a copy of its new secret state sealed with 
NEW -AP P LICATI ON_PU BLJC. 

Effects: 

seal(ALL-CURRENT_SECRETS, APPLJCATJON_PUBLJCS), 

seal (ALL-NEW-SECRETS, NEW _APPLICAT!ON_PUBL!C), 

sign( CHECKPOINT, APPL!CATJON_PRIVATE) 
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Chapter IV 

Single Vault Systems 

A simple single vault system is presented to introduce and illustrate 

some of the basic ideas of the proposed systems, and also to motivate 

and define the problems to be overcome by multiple vault systems. 

When a certified vault is first constructed by the techniques presented in 

Chapter IX, a suitable public key and its inverse private key are chosen by a 

mechanism within the vault's protected interior, using a physically random pro

cess as discussed in Chapter II. The public key is then displayed outside the 

vault, on a special device certified for this purpose. As far as the world outside 

the vault i~ concerned, the possessor of the vault's private key is the vault: it 

can read sealed confidential messages sent to the vault, and it can make the 

vault's signature. 

§1 Checkpoints & Restarts 

Introduces the notions of encrypted checkpoints and the restarts 

they can allow trustees to perform. 


